Search for supersymmetry in events with electrons or muons, jets and missing transverse momentum

Da XU On behalf of the ATLAS Collaboration

Introduction

LHC Run 2: Cross-section for strongly produced signal grows dramatically!

Supersymmetry: one of the most appealing BSM theory.

- Moderates the hierarchy problem.
- Helps with the grand unification of gauge couplings.
- Provides a suitable dark matter candidate.

Strongly produced

supersymmetry

- Large cross-section
- Heavy SUSY mass scale
- Generic experimental signatures: multiple jets + leptons + large MET

Benchmark searches

Targeting final states with electrons/muons, jets and missing transfer momentum

Epiphany 2016 (Da XU) * *R*-parity conservation is assumed in models presented here.

SM Background Modelling

SUSY searches rely on accurate modelling of the Standard Model backgrounds.

Standard Model

Top, multijets V, VV, VVV, Higgs & combinations of these

Combined fit of all regions and backgrounds and incl. systematic exp. and theor. uncertainties as nuisance parameters

Reducible backgrounds

Determined from data Backgrounds and methods depend on analyses

Irreducible backgrounds

Dominant sources: normalise MC in data control regions Subdominant sources: MC

← (CR)

nuisance parameters	Validation Validation regions used to cross check SM predictions with data	← (VR)	blinded
	Signal regions	← (SR)	blinded

1-lepton: Overview

ATLAS-CONF-2015-076

Target semi-leptonic decay: search for 1 lepton, jets and MET.

"hard lepton channel"

- > SUSY scenarios with large mass splitting between $\widetilde{\chi}_1^\pm$ and $\widetilde{\chi}_1^0$
- > Hard lepton e/µ pT > 35GeV; large MET and mT
- > 4 SRs with jet multiplicity ranging from 4 to 6

<u>"soft lepton channel"</u>

- > SUSY scenarios with compressed mass spectra: ISR and 2-jet type
- > Soft lepton e/µ pT: 7/6 35GeV; large MET
- > 2 SRs: ≥2jets and ≥ 5jets

1-lepton: Analysis strategy

1-lepton: Results

- Good agreement between predictions and observed data in most signal regions.
- In the 6-jet SR, a 2 σ excess is observed. This mainly arises from μ channel(local significance of 2.5 σ): 2.5 \pm 0.8 expected, 8 observed
- Without (hugely) significant observation, the exclusion limit has been set on the models: gluinos are excluded up to ~1.6TeV (for a massless $\tilde{\chi}_1^0$).

- Cannot exclude region covered by 6-jet SR due to moderate excess. - Soft lepton SR performs well in the mass compressed region.

2L same-sign/3L: Overview

ATLAS-CONF-2015-078

 Lighter third generation squarks favoring the production of leptons and heavy flavor quarks
 2 SRs enriched in b-jets

 Leptons produced in EWKinos cascade decays leading to W/Z bosons and via sleptons
 2 SRs with b-jet vetoes

Searching for jets and either two same sign leptons (e/μ) or at least three leptons.

 Low SM background allows loose MET requirement and gain in sensitivity to compressed SUSY.

Sensitive variables: #lep, #(b)jets, jet pT, MET, meff

Signal region	$N_{\rm lept}^{\rm signal}$	$N_{b m jets}^{20}$	$N_{\rm jets}^{50}$	$E_{\rm T}^{\rm miss}$ [GeV]	m _{eff} [GeV]
SR0b3j	≥3	=0	≥3	>200	>550
SR0b5j	≥2	=0	≥5	>125	>650
SR1b	≥2	≥1	≥4	>150	>550
SR3b	≥2	≥3	-	>125	>650

Epiphany 2016 (Da XU)

2L same-sign/3L: Analysis strategy

Irreducible backgrounds (MC): ttV, diboson, triboson (prompt leptons)

- Reducible backgrounds (data-driven): dominanted by ttbar in SR
 - Fake and non-prompt leptons (ttbar decaying semi-leptonically, Wjets): Matrix method to estimate fake leptons passing signal-like cuts.
 - <u>Charge flip electrons (ttbar decaying fully leptonically, Z)</u>: Likelihood method to determine flip probability, further used to reweight OS data.
 - Predictions validated in dedicated regions, and cross checked by an independent method.

2L same-sign/3L: Results

Data agrees well with SM prediction in all SRs.
Significant improvement over Run 1 limit in much of the phase space.

	SR0b3j	SR0b5j	SR1b	SR3b
Observed events	3	3	7	1
Total bkg events $p(s = 0)$	2.4 ± 0.7 0.33	$0.98 \pm 0.32 \\ 0.06$	$4.3 \pm 1.0 \\ 0.12$	0.78 ± 0.24 0.36

Left: Bottom squark masses <525GeV are excluded for a light $\tilde{\chi}_1^0$.

Right: m_ $\tilde{g} \leq 1.1$ -1.3TeV and m_ $\tilde{\chi}_1^{\pm} \leq 550-800 \text{GeV}$ are excluded depending on the model parameters.

10

2L Z+MET: Overview

ATLAS-CONF-2015-082

Reminder: Run 1 @ 8 TeV analysis saw excess of 3σ (ee) / 1.7σ (μμ)! LINK

Searching for final state with on-shell Z (leptonic), jets and MET.

Region	E ^{miss} [GeV]	H _T [GeV]	<i>n</i> jets	<i>m_{ℓℓ}</i> [GeV]	SF/DF	$\Delta \phi(\text{jet}_{12}, p_{\text{T}}^{\text{miss}})$
SRZ	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4

 > SR is kinematically identical to Run 1 analysis: confirm or deny the excess quickly!
 > Discriminants: dilepton invariant mass, Ht (high Ht→ high g̃ mass) and MET (high MET→ high x̃⁰₂ mass).

2L Z+MET: Analysis strategy

 <u>Ttbar(plus WW/Wt/Ztautau)</u>: dominant (~60%). "Flavour symmetry method" use data in eµ channel to estimate the contribution in the same flavour channels. Cross-checked with "sideband-fit".

 <u>Z+jets</u>: small but must be careful (would peak in the Z-window). Use photon+jets events in data to model the MET contribution. Cross check with MC.

2L Z+MET: Results

- ATLAS Run 2 data (13TeV,~3.3fb⁻¹) has improved sensitivity to strongly produced SUSY over Run 1 (8TeV, 20.3fb⁻¹).
- Analyses of strongly produced SUSY with leptons (e,μ)+jets+MET see no significant excesses over the SM predictions.
- Largest excesses observed in 1-lepton and Z+MET channels, with a significance of 2.0 and 2.2 sigma respectively.
- Exciting time to study SUSY: looking forward to ICHEP2016 and beyond!

Extra slides

The aplanarity, \mathcal{A} is a variable designed to allow more global information about the full momentum tensor of the event, M_{xyz} , via its eigenvalues λ_1 , λ_2 and λ_3 :

$$\sum_{i \ jet} \begin{pmatrix} P_x^2 & P_x P_y & P_x P_z \\ P_y P_x & P_y^2 & P_y P_z \\ P_z P_x & P_z P_y & P_z^2 \end{pmatrix}$$
Find the eigenvalues
$$A\mathbf{v} = \lambda \mathbf{v}$$
Ordered: $\lambda \mathbf{1} > \lambda \mathbf{2} > \lambda \mathbf{3}$
Normalised: $\sum_i \lambda_i = 1$

• Three categories of events:

 $\lambda 1 >> \lambda 2, \lambda 3$ • Linear event: most of momentum concentrated along 1 line $\lambda 1 \ge \lambda 2 >> \lambda 3$ • Planar event: most of momentum concentrated in a plane $\lambda 1 \ge \lambda 2 \ge \lambda 3$ • Aplanar event: momentum activity in all 3 directions

• Aplanarity =
$$\frac{3}{2}\lambda_3$$

Discriminating variables

The transverse mass $(m_{\rm T})$ of the lepton (ℓ) and $p_{\rm T}^{\rm miss}$ is defined as

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss} (1 - \cos[\Delta \phi(\vec{\ell}, p_{\rm T}^{\rm miss})])},\tag{1}$$

where $\Delta \phi(\vec{\ell}, p_T^{\text{miss}})$ is the azimuthal angle between the lepton and the missing transverse momentum. This is used in the soft-lepton 2-jet signal region and all hard-lepton signal regions to reject *W*+jets and semileptonic $t\bar{t}$ events.

The inclusive effective mass $(m_{\text{eff}}^{\text{inc}})$ is the scalar sum of the p_{T} of the lepton, the jets and $E_{\text{T}}^{\text{miss}}$:

$$m_{\rm eff}^{\rm inc} = p_{\rm T}^{\ell} + \sum_{j=1}^{N_{\rm jet}} p_{{\rm T},j} + E_{\rm T}^{\rm miss},$$
 (2)

where the index *j* runs over all the signal jets in the event with $p_T > 30$ GeV. The inclusive effective mass provides good discrimination against SM backgrounds, without being too sensitive to the details of the SUSY cascade decay chain.

The transverse scalar sum (H_T) is defined as

$$H_{\mathrm{T}} = p_{\mathrm{T}}^{\ell} + \sum_{j=1}^{N_{\mathrm{jet}}} p_{\mathrm{T},j},$$