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In this talk

@ How are hadron collisions described nowadays?

Here | consider only long-distance aspects. See the next talk by M.Serino on short-distance aspects.
@ |s there some room for improvements?

@ What is our contribution?
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Oleksandr Gituliar

Summary
o



Introduction Calculation Technique Results for TMD Splitting Functions Summary
@00 [e]e]e} (e]e] o

How are hadron collisions described nowadays?

Some people may think it is like...

Basically. it's two Falcon Punches being smashed into each other head-on.
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How are hadron collisions described nowadays?

Some people may think it is like...

Basically. it's two Falcon Punches being smashed into each other head-on.
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How are hadron collisions described nowadays?

But we know that it is like...
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The CTEQ6 parton distribution functions in the MS renormalization scheme and Q = 2 GeV for gluons, up, down, and strange quarks.
Parton Distribution Functions. iﬁ
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A brief reminder: Collinear Factorization and PDFs

Let us consider PDFs f;(x, ) which depend only on
@ longitudinal momentum fraction
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A brief reminder: Collinear Factorization and PDFs

Let us consider PDFs f;(x, ) which depend only on
@ longitudinal momentum fraction

» Collinear Factorization framework with 2 master formulae
Hadronic Cross-Section

o= [ B cs(i), @*/4%) + O(Aaco Q)

DGLAP Evolution Equations

S o] = 3 P @ [gxm]

J=£&,49,9
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A brief reminder: Collinear Factorization and PDFs

Let us consider PDFs f;(x, ) which depend only on

@ longitudinal momentum fraction
» Collinear Factorization framework with 2 master formulae
Hadronic Cross-Section

U_Z/ U/(X as(u), @/u?) + O(Aqen/ Q)

DGLAP Evolution Equations

Gl 1Cem]= 3 Pt @[]

Jj=8,9,9

It makes possible to
calculate collinear-unsafe observables
build collinear parton shower Monte-Carlo

simulate jets (‘ﬁ
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A brief reminder: Collinear Factorization and PDFs

Let us consider PDFs f;(x, ) which depend only on
@ longitudinal momentum fraction

» Collinear Factorization framework with 2 master formulae
Hadronic Cross-Section

o= [ B cs(i), @*/4%) + O(Aaco Q)

DGLAP Evolution Equations

S o] = 3 P @ [gxm]

J=£&,49,9

In short, these two formulae are the soul of LHC.

ifs

Oleksandr Gituliar



Introduction Calculation Technique Results for TMD Splitting Functions Summary
000 [e]e]e} (e]e] o

A brief reminder: Collinear Factorization and PDFs

Let us consider PDFs f;(x, ) which depend only on
@ longitudinal momentum fraction

» Collinear Factorization framework with 2 master formulae
Hadronic Cross-Section

o= [ B cs(i), @*/4%) + O(Aaco Q)

DGLAP Evolution Equations

S o] = 3 P @ [gxm]

J=£&,49,9

In short, these two formulae are the soul of LHC.

Is there some room for improvements? (‘ﬁ
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Do we know enough about PDFs to describe hadron collisions?

Classical example
@ The Z-boson gt spectrum in pp collisions at LHC in the lepton pair’s
invariant mass range 60GeV < M < 120GeV.!

o 107 T T
= T cMs
8 10'2>del:35pb‘a(\I§:7TeV T E
" N
‘g 3 \n\<21.pr>20(38\/ -
B 10°F d . h E
3 - data (e + u combined) Y
2 I rownec + cT10 '
T 10*F E
Zood T E +
3 S
Syuf
5| § — +
109F S o 1
:nn:|+ - \
-+ \
108F oof - ——]
h T
-7 | Il Il
107 10 107
q,[GeV]
LChatrchyan, et al. (2012) ’
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Do we know enough about PDFs to describe hadron collisions?

Classical example
@ The Z-boson gt spectrum in pp collisions at LHC in the lepton pair’s
invariant mass range 60GeV < M < 120GeV.!
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Do we know enough about PDFs to describe hadron collisions?

Classical example

@ The Z-boson gt spectrum in pp collisions at LHC in the lepton pair’s
invariant mass range 60GeV < M < 120GeV.}

@ high-gr region, for gr > 10GeV
Collinear PDFs work well for any fixed-order in
pQCD (LO, NLO, etc.)

@ low-gr region, for gr ~ 10GeV and below
Fixed-order pQCD with collinear PDFs fail, hence
resummation to infinite order in pQCD is required.

ifs
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Do we know enough about PDFs to describe hadron collisions?

Classical example
@ The Z-boson gt spectrum in pp collisions at LHC in the lepton pair’s
invariant mass range 60GeV < M < 120GeV.}

—.; 10 - o] ° high.—qr region, for gr > 10GeV . .
8 102 »fm:mb‘mﬁzmvﬁ* 1 Collinear PDFs work well for any fixed-order in
= N pQCD (LO, NLO, etc.)
%‘ l<2.1, p_>20 GeV. BN
3 10°F e rucombine X, E @ low-g7 region, for g7 ~ 10GeV and below
g 104 M romea 0 x ] Fixed-order pQCD with collinear PDFs fail, hence
7 A\ resummation to infinite order in pQCD is required.
10° T It can be fixed by introducing a generalized form
10° —— of QCD factorization?, i.e. low-qrt factorization,
e with PDFs dependent on transverse momentum®
1071y 10 7 and polarization.
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% [GeV] 2Collins, Soper, Sterman (1983, 1985)
bHautmann, Jung, et al. (2014)
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Project description: The Task

Describe evolutions of TMD PDFs.
o Calculate missing TMD Splitting Functions, i.e. Pgq and Pgyq.

(a) Pyq (b) Pyq (¢) Pyq

Figure 2: Matriz elements for the determination of splitting functions. Lower (incoming)
lines carry always momentum k, upper (outgoing) lines carry momentum q.

Sudakov parametrization for incoming and outgoing momenta, k and ¢ (see fig. 2), reads

¢+
2xpn

Kt = yp* + kI, ¢ =apt + ¢ + n#, q=q- 2k, (3.2)

Use the approach of Curci, Furmanski, Petronzio (1980)
modified to be compatible within High-Energy Factorization framework 2
@ light-cone axial gauge

@ projectors for incoming and outgoing legs

2Catani, Hautmann (1994)
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Project description: Some Formulas

Master Formula

. k2 do?d?+2¢ .
Kij (Zv 2 € (13) = 2?2#7)“23@(#% - QZ)PJ.m ® Ki(_;')) (g, k) ®Pi out -
| | |
| q |
I I I
1 k 1 1
(a) Pyg (b) Pyq (¢) Pog

Figure 2: Matriz elements for the determination of splitting functions. Lower (incoming)

lines carry always momentum k, upper (outgoing) lines carry momentum q.

Projectors
]P,uu _ kik‘i P, . = %
g,in — k2 ) q,in = p) .
]P;.”out - _gyu ]P’q.out = 2‘]—71

Note that momenta k and g are off-shell
@ usual Feynman rules brake gauge invariance

@ modification for vertices with incoming and outgoing lines is required d
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Project description: Modified Vertices

(a) Pyg (b) Pyq (¢) Pyq

Figure 2: Matriz elements for the determination of splitting functions. Lower (incoming)

lines carry always momentum k, upper (outgoing) lines carry momentum q.
.u / a o
Lorgegla s p) = igt" (v = 4 |,

Ll g (0, k. p') = igt® (“/“ - i%) 7
‘ pq

T (gkgl) = igte (A — P
aq g\ R ) =1gtt | o oy n»p,g :

Pay attention to the linear propagators in the above vertices
@ together with linear propagators from axial denominators

they make life really complicated (fortunately at higher orders).
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Complete Result
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Results for TMD Splitting Functions
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Collinear limit k? — 0 leads to classical Altarelli-Parisi kernels
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Results: Pgq
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Complete Result

(1=2) (o 2K%)
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Collinear limit k? — 0 leads to classical Altarelli-Parisi kernels

1+ 224 ¢(1 - 2)?

0 _
PO (z,0,¢) = Cp T
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Conclusions

@ calculated a complete set of TMD Splitting Functions

> in agreement with collinear limit
> in agreement with known results
> ensure gauge invariance

@ automated Mathematica package for calculations

Future Prospects
@ define evolution equations for TMD Splitting Functions
@ calculate TMD Matrix Elements (next talk by M.Serino)
o define and check sum rules
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Summary

Conclusions

@ calculated a complete set of TMD Splitting Functions

> in agreement with collinear limit
> in agreement with known results
> ensure gauge invariance

@ automated Mathematica package for calculations

Future Prospects
@ define evolution equations for TMD Splitting Functions
@ calculate TMD Matrix Elements (next talk by M.Serino)
o define and check sum rules

Thank You!
Any questions?
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