Splitting Functions for High-Energy Factorization

O.Gituliar, M.Hentschinski, K.Kutak

based on arXiv:1511.08439

In this talk

• How are hadron collisions described nowadays?

Here I consider only long-distance aspects. See the next talk by M.Serino on short-distance aspects.

- Is there some room for improvements?
- What is our contribution?

Supported by NCN grant DEC-2013/10/E/ST2/00656 of Krzysztof Kutak

Some people may think it is like...

Some people may think it is like...

Some people may think it is like...

Falcon Punches? REALLY ?!

The CTEQ6 parton distribution functions in the $\overline{\text{MS}}$ renormalization scheme and Q = 2 GeV for gluons, up, down, and strange quarks.

Parton Distribution Functions.

Let us consider PDFs $f_i(x, \mu)$ which depend only on

• longitudinal momentum fraction

Let us consider PDFs $f_i(x, \mu)$ which depend only on

- longitudinal momentum fraction
 - Collinear Factorization framework with 2 master formulae Hadronic Cross-Section

$$\sigma = \sum_{i} \int \frac{dx}{x} \left[f_i(x,\mu) \right] \hat{\sigma}_i(x,\alpha_s(\mu),Q^2/\mu^2) + O(\Lambda_{\text{QCD}}/Q)$$

DGLAP Evolution Equations

$$\frac{\partial}{\partial \ln \mu} \underbrace{f_i(x,\mu)}_{j=g,q,\bar{q}} P_{ij}(x) \otimes \underbrace{f_j(x,\mu)}_{j=g,q,\bar{q}} P_{ij}(x) \otimes \underbrace{f_j(x,\mu)}_{j=g,\bar{q}} P_{ij}(x) \otimes \underbrace{f_$$

Let us consider PDFs $f_i(x, \mu)$ which depend only on

- longitudinal momentum fraction
 - Collinear Factorization framework with 2 master formulae Hadronic Cross-Section

$$\sigma = \sum_{i} \int \frac{dx}{x} \left[f_i(x,\mu) \right] \hat{\sigma}_i(x,\alpha_s(\mu),Q^2/\mu^2) + O(\Lambda_{\rm QCD}/Q)$$

DGLAP Evolution Equations

$$\frac{\partial}{\partial \ln \mu} \boxed{f_i(x,\mu)} = \sum_{j=g,q,\bar{q}} P_{ij}(x) \otimes \boxed{f_j(x,\mu)}$$

It makes possible to

- calculate collinear-unsafe observables
- build collinear parton shower Monte-Carlo
- simulate jets

•

Let us consider PDFs $f_i(x, \mu)$ which depend only on

- longitudinal momentum fraction
 - Collinear Factorization framework with 2 master formulae Hadronic Cross-Section

$$\sigma = \sum_{i} \int \frac{dx}{x} \left[f_i(x,\mu) \right] \hat{\sigma}_i(x,\alpha_s(\mu),Q^2/\mu^2) + O(\Lambda_{\text{QCD}}/Q)$$

DGLAP Evolution Equations

$$\frac{\partial}{\partial \ln \mu} \left[f_i(\mathbf{x}, \mu) \right] = \sum_{j=g,q,\bar{q}} P_{ij}(\mathbf{x}) \otimes \left[f_j(\mathbf{x}, \mu) \right]$$

In short, these two formulae are the soul of LHC.

Let us consider PDFs $f_i(x, \mu)$ which depend only on

- longitudinal momentum fraction
 - Collinear Factorization framework with 2 master formulae Hadronic Cross-Section

$$\sigma = \sum_{i} \int \frac{dx}{x} \left[f_i(x,\mu) \right] \hat{\sigma}_i(x,\alpha_s(\mu),Q^2/\mu^2) + O(\Lambda_{\text{QCD}}/Q)$$

DGLAP Evolution Equations

$$\frac{\partial}{\partial \ln \mu} \left[f_i(\mathbf{x}, \mu) \right] = \sum_{j=g,q,\bar{q}} P_{ij}(\mathbf{x}) \otimes \left[f_j(\mathbf{x}, \mu) \right]$$

In short, these two formulae are the soul of LHC.

Is there some room for improvements?

Introduction	Calculation Technique	Results for TMD Splitting Functions	Summary
000	000	00	0

Classical example

• The Z-boson q_T spectrum in pp collisions at LHC in the lepton pair's invariant mass range 60 GeV < M < 120 GeV.¹

¹Chatrchyan, et al. (2012)

Introduction	Calculation Technique	Results for TMD Splitting Functions	Summary
000	000	00	0

Classical example

• The Z-boson q_T spectrum in pp collisions at LHC in the lepton pair's invariant mass range 60GeV < M < 120GeV.¹

• high- q_T region, for $q_T > 10 GeV$ Collinear PDFs work well for any fixed-order in pQCD (LO, NLO, etc.)

¹Chatrchyan, et al. (2012)

Introduction	Calculation Technique	Results for TMD Splitting Functions	Summary
000	000	00	0

Classical example

• The Z-boson q_T spectrum in pp collisions at LHC in the lepton pair's invariant mass range 60GeV < M < 120GeV.¹

- $\frac{\text{high}-q_T}{\text{Collinear PDFs}}$ work well for any fixed-order in pQCD (LO, NLO, etc.)
- low- q_T region, for $q_T \approx 10 \text{ GeV}$ and below Fixed-order pQCD with collinear PDFs fail, hence resummation to infinite order in pQCD is required.

¹Chatrchyan, et al. (2012) Oleksandr Gituliar

Introduction	Calculation Technique	Results for TMD Splitting Functions	Summary
000	000	00	0

Classical example

• The Z-boson q_T spectrum in pp collisions at LHC in the lepton pair's invariant mass range 60GeV < M < 120GeV.¹

- high- q_T region, for $q_T > 10 GeV$ Collinear PDFs work well for any fixed-order in pQCD (LO, NLO, etc.)
- low- q_T region, for $q_T \approx 10 \text{ GeV}$ and below Fixed-order pQCD with collinear PDFs fail, hence resummation to infinite order in pQCD is required.

It can be fixed by introducing a generalized form of QCD factorization^a, i.e. **low-q**_T factorization, with PDFs dependent on transverse momentum^b and polarization.

^aCollins, Soper, Sterman (1983, 1985) ^bHautmann, Jung, et al. (2014)

¹Chatrchyan, et al. (2012)

Introduction	
000	

Project description: The Task

Describe evolutions of TMD PDFs.

• Calculate missing TMD Splitting Functions, i.e. P_{gq} and P_{qq} .

Figure 2: Matrix elements for the determination of splitting functions. Lower (incoming) lines carry always momentum k, upper (outgoing) lines carry momentum q.

Sudakov parametrization for incoming and outgoing momenta, k and q (see fig. 2), reads

$$k^{\mu} = yp^{\mu} + k^{\mu}_{\perp}, \qquad q^{\mu} = xp^{\mu} + q^{\mu}_{\perp} + \frac{q^2 + \mathbf{q}^2}{2x p \cdot n} n^{\mu}, \qquad \tilde{\mathbf{q}} = \mathbf{q} - z\mathbf{k},$$
 (3.2)

Use the approach of Curci, Furmanski, Petronzio (1980) modified to be compatible within High-Energy Factorization framework ²

- light-cone axial gauge
- projectors for incoming and outgoing legs

²Catani, Hautmann (1994)

Calculation Technique	Results for TMD Splitting Functions	Summary
000	00	0

Project description: Some Formulas

Master Formula

Figure 2: Matrix elements for the determination of splitting functions. Lower (incoming) lines carry always momentum k, upper (outgoing) lines carry momentum q.

Projectors

$$\mathbb{P}_{g,\text{in}}^{\mu\nu} = \frac{k_{\perp}^{\mu}k_{\perp}^{\nu}}{\mathbf{k}^{2}}, \qquad \mathbb{P}_{q,\text{in}} = \frac{y\,\not\!p}{2}.$$

$$\mathbb{P}_{g,\text{out}}^{\mu\nu} = -g^{\mu\nu} \qquad \mathbb{P}_{q,\text{out}} = \frac{\not\!n}{2\,q\cdot n}$$

Note that momenta k and q are off-shell

- usual Feynman rules brake gauge invariance
- modification for vertices with incoming and outgoing lines is required

Introduction	Calculation Technique	Results for TMD Splitting Functions	Summary
000	000	00	0

Project description: Modified Vertices

Figure 2: Matrix elements for the determination of splitting functions. Lower (incoming) lines carry always momentum k, upper (outgoing) lines carry momentum q.

Pay attention to the linear propagators in the above vertices

• together with linear propagators from axial denominators they make life really complicated (fortunately at higher orders).

Introduction	Calculation Technique	Results for TMD Splitting Functions	Summary
000	000	•O	O

Results: P_{gq}

Complete Result

$$\hat{K}_{ij}\left(z,\frac{\mathbf{k}^2}{\mu_F^2},\alpha_s,\epsilon\right) = \frac{\alpha_s}{2\pi} z \int_{0}^{(1-z)(\mu_F^2 - z\mathbf{k}^2)} \frac{\mathrm{d}\tilde{\mathbf{q}}^2}{\tilde{\mathbf{q}}^2} \left(\frac{\tilde{\mathbf{q}}^2}{\mu^2}\right)^{\epsilon} \frac{e^{-\epsilon\gamma_E}}{\Gamma(1+\epsilon)} P_{ij}^{(0)}\left(z,\frac{\mathbf{k}^2}{\tilde{\mathbf{q}}^2},\epsilon\right)$$

$$\begin{split} P_{gq}^{(0)}\left(z,\frac{\mathbf{k}^{2}}{\tilde{\mathbf{q}}^{2}},\epsilon\right) &= C_{F}\Bigg[\frac{2\tilde{\mathbf{q}}^{2}}{z|\tilde{\mathbf{q}}^{2}-(1-z)^{2}\mathbf{k}^{2}|} \\ &\quad -\frac{\tilde{\mathbf{q}}^{2}(\tilde{\mathbf{q}}^{2}(2-z)+\mathbf{k}^{2}z(1-z^{2}))-\epsilon z(\tilde{\mathbf{q}}^{2}+(1-z)^{2}\mathbf{k}^{2})}{(\tilde{\mathbf{q}}^{2}+z(1-z)\mathbf{k}^{2})^{2}}\Bigg] \end{split}$$

Collinear limit $\mathbf{k}^2 \rightarrow 0$ leads to classical Altarelli-Parisi kernels

$$P_{gq}^{(0)}(z,0,\epsilon) = C_F \frac{1 + (1-z)^2 + \epsilon z^2}{z}$$

Introduction	Calculation Technique	Results for TMD Splitting Functions	Summary
000	000	0	0

Results: P_{qq}

Complete Result

$$\hat{K}_{ij}\left(z,\frac{\mathbf{k}^2}{\mu_F^2},\alpha_s,\epsilon\right) = \frac{\alpha_s}{2\pi} z \int_{0}^{(1-z)(\mu_F^2 - z\mathbf{k}^2)} \frac{\mathrm{d}\tilde{\mathbf{q}}^2}{\tilde{\mathbf{q}}^2} \left(\frac{\tilde{\mathbf{q}}^2}{\mu^2}\right)^{\epsilon} \frac{e^{-\epsilon\gamma_E}}{\Gamma(1+\epsilon)} P_{ij}^{(0)}\left(z,\frac{\mathbf{k}^2}{\tilde{\mathbf{q}}^2},\epsilon\right)$$

$$\begin{split} P_{qq}^{(0)}\left(z,\frac{\mathbf{k}^{2}}{\tilde{\mathbf{q}}^{2}},\epsilon\right) &= C_{F}\left(\frac{\tilde{\mathbf{q}}^{2}}{\tilde{\mathbf{q}}^{2}+z(1-z)\mathbf{k}^{2}}\right) \left[\frac{\tilde{\mathbf{q}}^{2}+(1-z^{2})\mathbf{k}^{2}}{(1-z)|\tilde{\mathbf{q}}^{2}-(1-z)^{2}\mathbf{k}^{2}|} \\ &+ \frac{z^{2}\tilde{\mathbf{q}}^{2}-z(1-z)(1-3z+z^{2})\mathbf{k}^{2}+(1-z)^{2}\epsilon(\tilde{\mathbf{q}}^{2}+z^{2}\mathbf{k}^{2})}{(1-z)(\tilde{\mathbf{q}}^{2}+z(1-z)\mathbf{k}^{2})}\right] \end{split}$$

Collinear limit $\mathbf{k}^2 \rightarrow 0$ leads to classical Altarelli-Parisi kernels

$$P_{qq}^{(0)}(z,0,\epsilon) = C_F \frac{1+z^2 + \epsilon(1-z)^2}{1-z}$$

Introduction	Calculation Technique	Results for TMD Splitting Functions	Summary
000	000		•

Summary

Conclusions

- calculated a complete set of TMD Splitting Functions
 - in agreement with collinear limit
 - in agreement with known results
 - ensure gauge invariance
- automated Mathematica package for calculations

Future Prospects

- define evolution equations for TMD Splitting Functions
- calculate TMD Matrix Elements (next talk by M.Serino)
- define and check sum rules

Introduction	Calculation Technique	Results for TMD Splitting Functions	Summary
000	000		•

Summary

Conclusions

- calculated a complete set of TMD Splitting Functions
 - in agreement with collinear limit
 - in agreement with known results
 - ensure gauge invariance
- automated Mathematica package for calculations

Future Prospects

- define evolution equations for TMD Splitting Functions
- calculate TMD Matrix Elements (next talk by M.Serino)
- define and check sum rules

Thank You! Any questions?

