ϕ analysis in Ar+Sc at 150A, 75A and 40A GeV/c

Łukasz Rozpłochowski

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

KISD seminar 15 March 2024

Outline

- 1. Definitions
- 2. Motivation
- 3. Event and track cuts
- 4. Invariant mass spectrum
- 5. Tag and probe method
- 6. Results
- 7. Summary

Definitions

transverse momentum

$$p_T = \sqrt{p_x^2 + p_y^2}$$

rapidity (relativistic velocity)

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

Motivation

Width of rapidity distributions of various particles in p+p and central Pb+Pb collisions as a function of beam rapidity

main decay channel $\phi \rightarrow K^+ K^-$

resonant particle (width = $4.266 \text{ MeV}/c^2$)

the lightest particle (m = $1020 \text{ MeV}/c^2$) with hidden strangeness ($s\overline{s}$)

Motivation

GOAL:

obtain the rapidity distributions of ϕ from Ar+Sc collision, and determine their widths

Event and track cuts

Centrality cut

- The most important event cut
- Take 10% of the most central events

dE/dx – truncated mean

- gas ionization by particles in the detector generates energy clusters.
- the dE/dx value can be calculated for each cluster
- calculate the mean from the highest 50% of dE/dx values

PID cut: dE/dx

- Black curves ±5% of kaon Bethe-Bloch
- Everything between curves accepted as kaon candidates

Invariant mass spectrum

Tag and probe method

- Tag and probe method allows to extract ϕ yield without knowledge of efficiency of kaon selection
- Tag sample \rightarrow at least one track in the pair passes PID condition
- Probe sample \rightarrow both tracks in the pair pass PID condition
- Expected signal yields $(N_{t/p})$ depend on efficiency of K selection (ϵ) and number of ϕ contributing to the spectra (N_{ϕ})

$$\begin{cases} N_t = N_{\phi} \epsilon (2 - \epsilon) \\ N_{\rho} = N_{\phi} \epsilon^2 \end{cases}$$
(1)

Spectra are fitted simultaneously to get N_{ϕ}

Tag and probe method

 Single spectrum is fitted with a sum of signal and background background event mixing signal convolution of relativistic Breit-Wigner and q-Gaussian (detector resolution)

For detail description see Eur.Phys.J.C 80 (2020) 3, 199

Tag and Probe ArSc 150A GeV/c

Normalized, CORRECTED ϕ distributions, ArSc @ 150A GeV/c

dn/dy distributions, ArSc @ 150A, 75A and 40A GeV/c

- solid line \rightarrow gaussian
- dotted line \rightarrow double gaussian
 - describes points better
 - will be used for evaluation of σ_y

Width of rapidity distributions

Width of rapidity distributions of various particles in p+p and central Pb+Pb collisions as a function of beam rapidity

 $\phi \to K^+ + K^-$ Blue cross represent Ar+Sc

Summary

- 1. We provided fits for invariant mass spectra in central Ar+Sc collisions
- 2. We obtained the ϕ distributions, p_T -fits and dN/dy distributions
- 3. Therefore we got the rapidity width for 150A, 75A and 40A GeV/c
- 4. Next steps:
 - study systematic uncertainties
 - preliminary release
 - ArSc @ 30A, 19A and 13A GeV/c perhaps 2×1D analysis?

Thank you

Extra slides

Event Cuts ArSc 150A GeV/c

Track Cuts ArSc 150A GeV/c

6. TOF-dE/dx

MC correction for Ar+Sc

/eos/experiment/na61/data/Simulation/

/Ar_Sc_150_15_Luminance/v1r21p0_sArtificial_V0native_final_MINISHOE_20M/ /Ar_Sc_75_15_Luminance/v1r21p0_newV0_SHOE_100k/ /Ar_Sc_40_15_Luminance/v1r21p0_sArtificial_noV0_MINISHOE_30M/

• Create two histograms:

Normalized, uncorrected distributions are multiplied by

$$C_{MC} = \frac{n_{gen}}{n_{sel}}$$

Cuts for n_{sel} in Ar+Sc

Event cuts (no upstream and PSD):

- 1. Has main vertex (ePrimaryBPD)
- 2. Has primary vertex (ePrimaryFitZ)
 - Quality of fit is "perfect"
 - z position from -582 cm to -578 cm

Need to be implement:

- Centrality, PSD?
- Trigger??

Track cuts (no PID):

- 1. Track status = 0
- 2. Has track
- 3. Track impact parameters:
 - *b*_x < 4 cm
 - *b_y* < 2 cm
- 4. $N_{\text{all}} \ge 30$
- 5. $N_{\rm VTPC} \ge 15$

Geometrical part of MC correction

- Definitions: $n_{acc} = \frac{N_{ev}^{acc}}{N_{ev}^{gen}}$ number of number of generated events $C_{geom} = \frac{n_{gen}}{n_{acc}}$
- Number of hits for daughter kaons in p+p:
 - $N_{\text{all}} \ge 31$
 - $N_{\text{VTPC}} \ge 16 \text{ or } N_{\text{GTPC}} \ge 5$
- Number of hits for daughter kaons in Ar+Sc and p+p no GTPC:
 - $N_{\text{all}} \ge 31$
 - $N_{\rm VTPC} \ge 16$

Normalized, CORRECTED ϕ distributions, ArSc @ 150A GeV/c

Normalized, CORRECTED ϕ distributions, ArSc @ 75A GeV/c

Normalized, CORRECTED ϕ distributions, ArSc @ 40A GeV/c

fit with function:

$$f(p_T) = \frac{A_f \cdot p_T \cdot \exp\left(-\frac{m_T}{T}\right)}{T(T + m_{T,max}) \cdot \exp\left(-\frac{m_{T,max}}{T}\right)}$$

to obtain integral of the tail (needed for dN/dy)

σ_y from dn/dy histogram

Width of rapidity distributions

p+p	σ_y^{gauss}	σ_y^{hist}
158 GeV	0.938	0.88
80 GeV	0.850	0.68
40 GeV	0.780	0.72

Ar+Sc	σ_y^{2gauss}	σ_y^{hist}
150 GeV	0.98	0.95
75 GeV	0.86	0.86
40 GeV	0.78	0.72

Tag and Probe ArSc 75A GeV/c

Tag and Probe ArSc 40A GeV/c

