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Question from the previous lecture

Suppose a beam of particles is known to consist of charged pions and muons. For each
particle in the beam we measure a variable t, whose distribution for pions (π) and muons
(µ) is

f(t;π) =
1√
2πσ

e−(t−µπ)2/2σ2

, f(t;µ) =
1√
2πσ

e−(t−µµ)2/2σ2

,

where µπ = 0, µµ = 2 and σ = 1. For each particle we want to test the hypothesis H0

that it is a pion against the alternative H1 that it is a muon. The critical region of the
test is given by t > tc where tc is a given constant.

1 Suppose we want to have a test of size α = 0.05. Illustrate where the critical region
lies and what α means on a sketch of the p.d.f.s f(t|π) and f(t|µ) and show that
tc is numerically about 1.64.

2 Suppose a sample of particles is known to consist of 99% pions and 1% muons.
What is the purity of the muon sample selected by t > tc? Here, purity means the
probability to be a muon given that the particle had t > tc (i.e., it was rejected as a
pion and thus selected as a muon candidate).

Solution to be sent to me before the next lecture
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Solution

1 α = 0.05 (test size) means that:

1− F (tc; 0.0, 1.0) =

∫ ∞

tc

f(t|π) = 0.05

1− erf(tc) = 0.05 =⇒ tc = erf−1(0.95) = 1.64485...

2 For the second part, we need to calculate:

1− β =1− F (tc; 2.0, 1.0) =

∫ ∞

tc

f(t|µ) = 0.6388...

Nπ = 0.99 ∗N, Nµ = 0.01 ∗N

purity =
(1− β)Nµ

(1− β)Nµ + αNπ
≃ 0.01 ∗ 0.639

0.01 ∗ 0.639 + 0.99 ∗ 0.05 = 0.114...

The choice of the critical point tc (selection working point) results in muon selection
efficiency of 64% with purity (given the beam composition) of 11.4% .
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Maximum Likelihood estimator - reminder
Let f(x; θ) is a p.d.f. of a known form but unknown parameter θ (more generally
θ = (θ1, ...θm)). Let x1, x2, ..., xn be a sample of n events drawn from the above
p.d.f. Generally, xi may be a multidimensional vector. We define:

L(θ) =

n∏
i=1

f(xi; θ) (1)

called the likelihood function.

L is technically a joint p.d.f. of x but, assuming a fixed data sample,
represents a function of θ.

The maximum likelihood (ML) estimator θ̂ is given by:

∂L

∂θi
= 0, i = 1, ...,m. (2)

Log-likelihood function is commonly used:

logL(θ) =

n∑
i=1

ln f(xi; θ) (3)
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Variance of ML estimator
RCF bound

Rao-Cramér-Frechet (RCF) inequality states that:

V [θ̂] ≥
(
1 +

∂b

∂θ

)2
/

E

[
−∂2logL

∂θ2

]
. (4)

In case of equality (i.e. minimum variance) the estimator is said to be efficient.

E.g., τ̂ = 1
n

∑n
i=1 xi is an efficient estimator for the parameter τ . (show!)

ML are always efficient in the large sample limit!

Assuming efficiency and zero bias, for a general case when θ = (θ1, ...θm) we get:

(
V −1

)
ij
= E

[
−∂2logL

∂θi∂θj

]
−→

(
V̂ −1

)
ij
= −∂2logL

∂θi∂θj

∣∣∣∣∣
θ=θ̂

(5)

For a single parameter θ this reduces to: σ̂2
θ̂ =

(
−1

/
∂2logL
∂θ2

) ∣∣∣∣∣
θ=θ̂
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Variance of ML estimator
Taylor expansion

Let’s take a single parameter θ and expand log-likekihood in Taylor series about
the ML estimate:

logL(θ) = logL(θ̂) +

[
−∂logL

∂θ

] ∣∣∣∣∣
θ=θ̂

(θ − θ̂) +
1

2!

[
∂2logL

∂θ2

] ∣∣∣∣∣
θ=θ̂

(θ − θ̂)2 + ... (6)

By definition, logL(θ̂) = logLmax and ∂logL
∂θ

∣∣∣
θ=θ̂

= 0, and so:

logL(θ) = logLmax − (θ − θ̂)2

2σ̂2
θ̂

or logL(θ±σ̂θ̂) = logLmax−
1

2
. (7)
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Variance of ML estimator
Taylor expansion
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Extended Maximum Likelihood

Let f(x; θ) is a p.d.f. of a known form but unknown parameter θ (more generally
θ = (θ1, ...θm)). Let x1, x2, ..., xn be a sample of n events drawn from the above
p.d.f. Now, let us treat n as a Poisson random variable with mean ν.

The likelihood takes the form:

L(θ) =
νn

n!
e−ν

n∏
i=1

f(xi;θ) =
e−ν

n!

n∏
i=1

νf(xi;θ) (8)

called the extended likelihood function.

If ν is a function of θ then log-likelihood is:

logL(θ) = n ln ν(θ)− ν(θ) +

n∑
i=1

ln f(xi; θ) = −ν(θ) +

n∑
i=1

ln (ν(θ)f(xi; θ)) ,

(9)

where terms not depending on θ have been dropped.
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Extended Maximum Likelihood
mean lifetime: τ = 40, ν = ν0(1− e−T/τ )

lo
g
L

=
−
ν
+

∑ ln
(ν

f
(x

i
))

lo
g
L

=
∑ ln

f
(x

i
)
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Extended Maximum Likelihood
sample composition

In a trivial case when ν is independent from θ,
the derivative of logL w.r.t. ν gives the
estimator ν̂ = n. (show!)
However, it is often the case that different
classes of events with known p.d.f.’s contribute
to the observed distribution and our task is to
estimate yields of the individual components.

In a general case of having m contributions, a logL can be defined as:

logL(µ) = −
m∑
j=1

µj +

n∑
i=1

ln

 m∑
j=1

µjfj(xi)

 , (10)

where the vector µ = (µ1, ..., µm) represents directly the yields of individual
contributions. Of course, the fit is capable of estimating all µj parameters only if
the corresponding p.d.f.’s are different. In general, such a fit results in correlated
estimates.
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Binned Maximum Likelihood fit
ML fit as we’ve discussed it, uses mesured quantities directly and provides efficient
estimators. But this approach is not always practical. When a dataset is large it
may be very computationally intense. The commonly used alternative is the
binned maximum likelihood fit.

The data sample of ntot events has to be histogrammed, yielding a certain
number of entries n = (n1, ..., nN ) in N bins.

The expectation values ν = (ν1, ..., νN ) for the bin are given by:

νi(θ) = ntot

∫ xmax
i

xmin
i

f(x;θ)dx, (11)

where x
min/max
i are the bin limits.

If ntot is fixed and one is interested in the shape of the distribution, the joint
p.d.f. is given by the multinomial distribution:

fjoint(n,ν) =
ntot!

n1!...nN !

(
ν1
ntot

)n1

...

(
νN
ntot

)nN

, (12)
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Binned Maximum Likelihood fit
The resulting log-likelihood (ignoring spurious terms) reads:

logL(θ) =

N∑
i=1

ni ln νi(θ). (13)

In the limit of large number of bins, the binned ML approaches the standard
one. However, for coarser binning may result in suboptimal results.

τ = 5.0

ntot = 100

στ̂ = 0.5

N = 50
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Binned Maximum Likelihood fit
The resulting log-likelihood (ignoring spurious terms) reads:

logL(θ) =

N∑
i=1

ni ln νi(θ). (14)

In the limit of large number of bins, the binned ML approaches the standard
one. However, for coarser binning may result in suboptimal results.

τ = 5.0

ntot = 100

στ̂ = 0.5

N = 30
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Binned Maximum Likelihood fit
The resulting log-likelihood (ignoring spurious terms) reads:

logL(θ) =

N∑
i=1

ni ln νi(θ). (15)

In the limit of large number of bins, the binned ML approaches the standard
one. However, for coarser binning may result in suboptimal results.

τ = 5.0

ntot = 100

στ̂ = 0.5

N = 10
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Binned Maximum Likelihood fit
The resulting log-likelihood (ignoring spurious terms) reads:

logL(θ) =

N∑
i=1

ni ln νi(θ). (16)

In the limit of large number of bins, the binned ML approaches the standard
one. However, for coarser binning may result in suboptimal results.

τ = 5.0

ntot = 100

στ̂ = 0.5

N = 5
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Binned Maximum Likelihood fit
extended binned log-likelihood

We may take an alternative approach whereby the total number of events is itself
considered a Poisson-distributed random variable with the mean νtot.

The expectation values ν = (ν1, ..., νN ) now depend on νtot and θ:

νi(νtot,θ) = νtot

∫ xmax
i

xmin
i

f(x;θ)dx. (17)

Content of each bin becomes a Poisson random variable. We are now
concerned both with the shape and the normalisation of the sample
distribution. The joint p.d.f. is given by:

fjoint(n,ν) =

N∏
i=1

νni
i

ni!
e−νi (18)
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Binned Maximum Likelihood fit
extended binned log-likelihood

Taking the logarithm of the joint p.d.f. and dropping terms that do not
depend on the parameters gives:

logL(νtot,θ) = −νtot +

N∑
i=1

ni ln νi(νtot,θ), (19)

which is the binned version of the extended log-likelihood function.

Here, similar conclusions apply as the ones drawn for the unbinned ML fit.
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Example of a 2D ML fit
Data events have been collected in an experiment yielding a scalar random
variable x:

The sample consists of a mixture of signal and background events with
known p.d.f.’s.

Signal p.d.f.: fS(x;µ, σ) =
1√

2πσ2
e−(x−µ)2/2σ2

,

Background p.d.f.: fB(x;λ) =
x
λ2 e

−x/λ, (λ = 5),

The varaible x has been recorded in the range (0, 30).

No assumption is made about the yields NS & NB .

We want to:

1 Estimate number of signal NS and background NB events in the observed
sample,

2 assess the error on the fitted NS , NB .

We use the extended ML fit:

logL(NS , NB) = −NS −NB +

n∑
i=1

ln (NSfS(xi;µ, σ) +NBfB(xi;λ)) . (20)
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Example of a 2D ML fit
λ = 5.0, µ = 10.0, σ = 1.0.

Uncertainties from the logL profile ↗
Scatter plot of the fit for 1000 MC ↘
events

Example fit: V̂ =

[
− ∂2logL

∂θi∂θj

∣∣∣∣∣
θ=θ̂

]−1
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Example of a 2D ML fit
λ = 5.0, µ = 5.0, σ = 3.0.

Uncertainties from the logL profile ↗
Scatter plot of the fit for 1000 MC ↘
events

Example fit: V̂ =

[
− ∂2logL

∂θi∂θj

∣∣∣∣∣
θ=θ̂

]−1
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The method of least-squares (LS)
Consider fitting a function to a set of n measuremnets (xi, yi), where yi is
assumed to be Gaussian random centered about the true value λi(xi,θ) with
standard deviation σi. θ = (θ1, ..., θm) are the function parameters we seek to
estimate. The meaasurements are assumed to be mutually independent.
The joint p.d.f. is given by:

g(y;λ,σ) =

n∏
i=1

1√
2πσ2

exp

(
−(yi − λi)

2

2σ2
i

)
(21)

Taking the logarithm and ignoring terms not dependent on λ gives the
log-likelihood function:

logL(θ) = −1

2

n∑
i=1

(yi − λ(xi;θ))
2

σ2
i

(22)

or: χ2(θ) =

n∑
i=1

(yi − λ(xi;θ))
2

σ2
i

, (23)

where the latter χ2 needs to be minimized in order to find LS estimators θ̂.
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The method of least-squares (LS)
General case of correlated Gaussian

The χ2(θ) function can be defined also for more general case of correlated
measurements, as long as they can be described by a n-dimensional Gaussian:

χ2(θ) =

n∑
i,j=1

(yi − λ(xi;θ)) (V
−1)ij (yj − λ(xj ;θ)) (24)

which reduces to E.q. 23 when V is diagonal.
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Linear LS fit
Let us consider a special case when predictions λ depend linearly on θ.

λ(xi;θ) =

m∑
j=1

aj(xi)θj =

m∑
j=1

Aijθj = (Aθ)i (25)

The χ2 can be written as:

χ2(θ) = (y − λ)TV −1(y − λ) = (y −Aθ)TV −1(y −Aθ), (26)

and the χ2 minimum w.r.t. θ can be found analytically!

∂χ2

∂θ
= −2(ATV −1y −ATV −1Aθ) = 0 (27)

θ̂ = (ATV −1A)−1ATV −1y, (28)

i.e. the solution is a linear combination of the measurements yi, provided matrix
ATV −1A can be inverted (is not singular).

Gauss-Markov theorem: θ̂ is unbiased and has minimum variance independently of
n and individual measurements p.d.f.’s.
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Linear LS fit
The cov[θ̂] is obtained using error propagation:

cov[θ̂] ≡ U =
∂θ̂

∂y
V
∂θ̂

∂y

T

= (ATV −1A)−1 (29)

Note that we reproduce the RCF bound:

(U−1)ij = (ATV −1A)ij =
1

2

[
∂2χ2

∂θi∂θj

]
θ=θ̂

= −
[
∂2logL

∂θi∂θj

]
θ=θ̂

(30)

χ2(θ) = χ2(θ̂) +
1

2

m∑
i,j=1

[
∂2χ2

∂θi∂θj

]
θ=θ̂

(θi − θ̂i)(θj − θ̂j)

= χ2(θ̂) + (θ − θ̂)TU−1(θ − θ̂), (31)

gives us the contour of one standard deviation from LS estimates:

χ2(θ̂ ± σ) = χ2(θ̂) + 1 = χ2
min + 1 (32)

The contour holds even for non-linear parameters in analogy to the logL Taylor
expansion.
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Linear LS fit
A super-simple example - linear regression

Assume a straight line fit through n measurements (xi, yi), all
with the same error σ:

χ2(p0, p1) =
n∑

i=1

(yi − (p0 + p1xi))
2

σ2
(33)

A =

 1 x1

. .

. .
1 xn

 , V =

 σ2 ... 0
... σ2 ...
0 ... σ2

 , U =
σ2

n
∑

x2
i − (

∑
xi)2

( ∑
x2
i −

∑
xi

−
∑

xi n

)
(34)

When unknown, σ can be estimated from the fit itself: σ̂2 =
∑n

i=1
(yi−(p̂0+p̂1xi))

2

n−2

Linear LS approximation (linear expansion) has a lot of applications, allowing for
solutions to problems with very large number of parameters using linear algebra.

For convergence, it often involves multiple iterations of the fit!
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Least Squares with binned data
LS is also used to fit p.d.f. to data binned in a histogram. Let f(x;θ) be the
hypothetical p.d.f. and yi contents of bin i. The number of entries predicted in
the bin λi = E[yi] is:

λi(θ) = n

∫ xmax
i

xmin
i

f(x;θ)dx = npi(θ). (35)

Making an approximation of Gaussian distribution of yi the χ2 is given as:

χ2(θ) =

N∑
i=1

(yi − npi(θ))
2

npi(θ)
, (36)

where
√

npi(θ) is the standard deviation for the Poisson distribution.
Sometimes the modified LS (MLS) is used instead:

χ2
M(θ) =

N∑
i=1

(yi − npi(θ))
2

yi
. (37)

Careful! This is fine for large statistics. Think of poorly populated or empty bins!
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Least Squares with binned data

It might be tempting to use LS method in order to fit the total yield of the
distribution by introducing additional free parameter ν:

λi(θ, ν) = ν

∫ xmax
i

xmin
i

f(x;θ)dx = νpi(θ). (38)

However, minimising the χ2 by setting ∂χ2

∂ν = 0 results in biased estimates of n.
We get1:

ν̂LS = n+ χ2

2 ,

ν̂MLS = n− χ2.

Note: This can be corrected for, but should be considered at all times.

1Exercise: Show it by explicit calculation
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Putting it to work...
1D fit of the signal yield

N data events have been collected in an experiment yielding a scalar random
variable x:

The sample consists of a mixture of signal and background events with
known p.d.f.’s.

Background p.d.f.: fB(x) =
1
τ e

−x/τ , τ = 5,

Signal p.d.f.: fS(x) =
1√

2πσ2
e−(x−µ)2/2σ2

, µ = 10, σ = 3,

The varaible x has been recorded in the range (0, 30).

No assumption about background yield can be made: N = NS +NB .

Our task is to:

1 Estimate number of signal events NS in the observed sample,

2 assess the error of the NS estimate from the logL or χ2 profile.

MIND: This is NOT an extended fit.
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Putting it to work...
1D fit of the signal yield

We shall use three strategies:

1 the Unbinned Maximum Likelihood fit:
Unbinned ML Python notebook template in Colab

2 the Binned Maximum Likelihood fit; 10 bins over (0, 30):
Binned ML Python notebook template in Colab

3 the Binned Least Squares (NOT modified) fit; 10 bins over (0, 30):
Binned LS Python notebook template in Colab

and four data samples:

1 pickled data sample 1 from GitHub

2 pickled data sample 2 from GitHub

3 pickled data sample 3 from GitHub

4 pickled data sample 4 from GitHub

All shall be executed on the Google Colaboratory platform.
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https://colab.research.google.com/github/bruckman/KISD_Statistics_ex-1/blob/master/ML_fit_template.ipynb
https://colab.research.google.com/github/bruckman/KISD_Statistics_ex-1/blob/master/MLB_fit_template.ipynb
https://colab.research.google.com/github/bruckman/KISD_Statistics_ex-1/blob/master/LS_fit_template.ipynb
https://github.com/bruckman/KISD_Statistics_ex-1/raw/master/raw_data_1_tau5.npy
https://github.com/bruckman/KISD_Statistics_ex-1/raw/master/raw_data_2_tau5.npy
https://github.com/bruckman/KISD_Statistics_ex-1/raw/master/raw_data_3_tau5.npy
https://github.com/bruckman/KISD_Statistics_ex-1/raw/master/raw_data_4_tau5.npy


Detailed instructions

−→ Click on one of the Python notebook links in order to open it in Google
Colaboratory.

−→ Click to download the assigned dataset file from GitHub.

−→ Click on one of the Files icon on the left bar of your Colab interface. If you
cannot see any datafiles, click on the Upload button and select previously
downloaded file. As a result you should see:
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Hints part 1: fit the Ns, logL or χ2 function
−→ You need p.d.f. normalization factors in the range (0,30). For this purpose calculate
scales and scaleb just as it is done in the main part of the Python script. You will
need xmin, xmax, tau0, mu0 and sigma0.
−→ You need the total number of collected events. For the unbinned ML this is just the
length of the data vector (len(data)). For the binned methods loop over the hist

array and sum all entries. nbins=len(hist) gives you the number of bins.
−→ For the unbinned ML you need to loop over the data array, for each entry calculate
the normalized p.d.f.’s (gauss & decay) and acumulate logL according to Eq. (25) of
lecture 4 and using the combined S+B p.d.f.
−→ For the binned methods you need to loop over the bins, the hist array (e.g. for k

in range(nbins)). You need to get the prediction for the bin by integrating the
normalized p.d.f., see Eq. (13) of lecture 5. Bin k is delimitted by binsy[k] and
binsy[k+1].
−→ For the binned ML increment the logL using Eq. (13) of lecture 5 and the combined
S+B p.d.f.
−→ For the binned LS increment the χ2 using Eq. (36) of lecture 5 and the combined
S+B p.d.f.
−→ NOTE: We are fitting just one free parameter, NS (coded as mus). Make sure you
properly define the combined S+B p.d.f. using NS and the total number of collected
events.

Pawel Brückman Statistics in Data Analysis April 10, 2024 28 / 32



Hints part 2: estimate the error on Ns using logL or χ2

profile

−→ The code provides you with the pl & ll array arrays which contain the estimated
NS and the corresponding value of either logL or χ2, respectively.
−→ Your task is to find values of NS corresponding to +1σ and −1σ about the fitted
value (coded as sigma neg & sigma pos).
−→ For the purpose, recall Eq. (7) and Eq. (32) of lecture 5.
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Thank you
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Back-up
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Least Squares with binned data
χ2 estimators of the yield

The total yield of the distribution parameterised by an additional free parameter ν:
λi = νpi. We have n events distributed over N bins.

Minimising the χ2 by setting ∂χ2

∂ν
= 0 results in biased estimates of n:

LS:

χ
2
=

N∑ (yi − νpi)
2

νpi

,
∂χ2

∂ν
= −2

N∑ (yi − νpi)pi

νpi

−
N∑ (yi − νpi)

2pi

(νpi)2
= 0

− 2
N∑

(yi − νpi) −
N∑ (yi − νpi)

2

νpi

= −2n + 2ν − χ
2
= 0

=⇒ ν̂LS = n +
χ2

2
(39)

MLS:

χ
2
=

N∑ (yi − νpi)
2

yi

,
∂χ2

∂ν
= −2

N∑ (yi − νpi)pi

yi

= 0 =⇒ ν

N∑ p2
i

yi

= 1

χ
2
=

N∑
yi − 2ν

N∑
pi + ν

2
N∑ p2

i

yi

= n − 2ν + ν = n − ν

=⇒ ν̂MLS = n − χ
2 (40)

Pawel Brückman Statistics in Data Analysis April 10, 2024 32 / 32


