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Question from the previous lecture

1 Suppose two independent measurements of the same quantity gave the
following results:

x1 ± σ1 and x2 ± σ2

Take the weighted mean to be x̄ = wx1 + (1− w)x2. Find the w which
minimizes the error on the mean, hence provide expressions for the weighted
mean x̄ and its variance σ2

x̄.

Solution to be sent to me before the next lecture
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Solution
We have to express the variance of the weighted mean

x̄ = wx1 + (1− w)x2

using the recipe for error propagation:

V ar(x̄) =

(
∂x̄

∂x1

)2

σ2
1 +

(
∂x̄

∂x2

)2

σ2
2

= w2σ2
1 + (1− w)2σ2

2

and minimise it w.r.t. the weight w.

∂V ar(x̄)

∂w
= 2wσ2

1 − 2(1− w)σ2
2 = 0

=⇒ w =
σ2
2

σ2
1 + σ2

2

Hence we get:

x̄ =
σ2
2x1 + σ2

1x2

σ2
1 + σ2

2

and V ar(x̄) =
σ2
1σ

2
2

σ2
1 + σ2

2

∴
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Accidents happen...
Exponential distribution

Imagine a fleet of governmental limousines circulating
daily. For any of them there is a probability λ to be
crashed in an accident in a day. We start with N0

limousines. What is the time p.d.f. of the accidents?

For many circulating cars, accident rate is simply proportional to their
number:

dN

dt
= −λN ⇒ dN

N
= −λdt

/∫
lnN = −λt+ C ⇒ N(t) = N0e

−λt ⇒ dN(t)

dt
= −λN0e

−λt (1)

...so we observe an exponential decay of the fleet.
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Accidents happen...
Exponential distribution

Now consider just a single limousine of the PM. What is the
time p.d.f. for its accident?
Let t1/2 (half-life) be the time of 50% survival probability:

Fs(t1/2) = (1− ε)n = 0.5, nδ = t1/2, kδ = t, δ is an infinitesimal time interval.

n =
ln(0.5)

ln(1− ε)
≃ − ln(0.5)(1− ε)

ε

ε→0→ ln(2)

ε

Fs(t) = (1− ε)k = (1− ε)
1
ε

t
t1/2

ln(2)
=

∣∣∣ lim
ε→0

(1− ε)
α
ε = e−α

∣∣∣ =
= e

− t
t1/2

ln(2)
=⇒ Fa(t) = 1− e

− t
t1/2

ln(2)
(2)

Fa is the cumulative accident probability. Hence the the p.d.f.:

fa(t) = F ′
a(t) =

1

τ
e−

t
τ , with τ =

t1/2
ln 2

≈ 1.44 t1/2 (3)

E[t] = τ = mean lifetime, V [t] = τ2. show these! (4)
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Exponential distribution

You are most likely to damage a brand new limousine!!!
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Exponential distribution

fa(t|t0) = fa(t)/Fs(t0) =

1

τ
e−

t
τ /e−

t0
τ =

1

τ
e−

t−t0
τ = fa(t− t0).

Do not be fooled! Probability of crashing a limo any day remains constant
provided it has survied this far (conditional probability!).
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Mean of a random variable ensamble
Central Limit Theorem

Imagine a measurement being a sum of of many n independent ones, or an
average of n random numbers drawn from an arbitrary distribution (sampling
distribution).

The mean < x > converges on the initial distribution mean while the shape tends
to a...
...Gaussian with ever decreasing width as n ↗.
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Mean of a random variable ensamble
Central Limit Theorem

Ok, that was a well behaved distribution. Let’s try something a bit less “gaussian”
to start with:

The mean < x > converges on the initial distribution mean while the shape tends
to a...
...Gaussian with ever decreasing width as n ↗.
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Mean of a random variable ensamble
Central Limit Theorem

Ok, that was not austere enough. Let’s try being bolder:

The mean < x > converges on the initial distribution mean while the shape tends
to a...
...Gaussian with ever decreasing width as n ↗.
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Mean of a random variable ensamble
Central Limit Theorem

And again. Something manifestly non-Gaussian:

The mean < x > converges on the initial distribution mean while the shape tends
to a...
...Gaussian with ever decreasing width as n ↗.
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Mean of a random variable ensamble
Central Limit Theorem

Finally, give up the symmetry:

The mean < x > converges on the initial distribution mean while the shape tends
to a...
...Gaussian with ever decreasing width as n ↗.
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Central Limit Theorem

Sum of n random variables drawn from a probability distribution function of a
finite variance, σ2, tends to be Gaussian distributed about the expectation value
for the sum, with variance nσ2.
Consequently, the mean of the same n random values will have the expectation
value of the initial p.d.f. and varaince 1

nσ
2.

Ex: What is the probability that the mean salary of 50 randomly chosen emploies
of our institute exceeds 6000 pln?
NOTE: We don’t need to know the actual distribution of salaries in the institute.
All we need to know is the average and the varaiance (or standard dev.).

Careful: The finite variance is an important (and the only) requirement. A notable
exception is the Cauchy (Breit-Wigner) distribution describing resonant states:

f(x) =
1

π

1

1 + x2

You can trivially show that the E[x2] is divergent!
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Back to fleet of limousines...
a single limo
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Back to fleet of limousines...
2 limo’s
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Back to fleet of limousines...
5 limo’s
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Back to fleet of limousines...
10 limo’s

Pawel Brückman Statistics in Data Analysis March 20, 2024 14 / 39



Back to fleet of limousines...
50 limo’s
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Back to fleet of limousines...
100 limo’s
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Gaussian distribution

The Gaussian p.d.f. of the continuous random variable x with
−∞ < x < ∞ is defined by:

f(x;µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
(5)

The term normal distribution is used when µ = 0 & σ = 1.

Gaussian p.d.f.: normalisation, mean & variance

∫ ∞

−∞
f(x;µ, σ2) = 1 (6)

E[x] =

∫ ∞

−∞
x

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
dx = µ, (7)

V [x] =

∫ ∞

−∞
(x− µ)2

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
dx = σ2. (8)

Can you prove the above?
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Gaussian distribution

The cumulative distribution of the Gaussian p.d.f. is not analitically calculable.
Nonetheless, quantiles of the normal distribution are of paramount importance for
statistics!
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Gaussian distribution
Quantiles

Standard deviation (σ) of a Gaussian distribution has central importance for error
analysis:

µ± 1σ : 68.27%, µ± 2σ : 95.45%, µ± 3σ : 99.73%.
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Characteristic function

Fourier Transform of a p.d.f.: the characteristic function

ϕ(k) = E[eikx] =

∫ ∞

−∞
dx f(x)eikx ⇒ f(x) =

1

2π

∫ ∞

−∞
dk ϕ(k)e−ikx

(9)

m’th algebraic moment of f(x) is obtained by simple diferentiation of ϕ(k):

(−i)m
dm

dkm
ϕ(k)

∣∣∣
k=0

= (−i)m
dm

dkm

∫ ∞

−∞
dx f(x)eikx

∣∣∣
k=0

=

= (−i2)m
∫ ∞

−∞
dx xmf(x) = E[xm] (10)

Let z =
∑

i xi, where x1, ..., xn are n independent random variables:

ϕz(k) =

∫
...

∫
eik

∑
i xif1(x1)...fn(xn)dx1...dxn = (11)

=

∫
eikx1f1(x1)dx1...

∫
eikxnfn(xn)dxn = ϕ1(k)...ϕn(k). (12)
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Central Limit Theorem
Derivation of...

Let z = 1√
n
(x1 + ...+ xn) =

∑n
j=1

xj√
n
. For a single variable u ≡ x/

√
n, the

characteristic function is given by:

ϕu(k) =

∫ ∞

−∞
du f(u)eiku = 1 + iE[u]k − 1

2
E[u2]k2 +O(k3) =

= 1 + iE[x]
k√
n
− 1

2
E[x2]

k2

n
+O(

k√
n

3

)

(13)

Without any loss of generality, we can assume that E[x] = 0 and E[x2] = σ2

(otherwise use x̄ ≡ x− E[x]):

lim
n→∞

ϕz(k) = lim
n→∞

n∏
j=1

ϕuj (k) = lim
n→∞

n∏
j=1

(
1− E[x2]

k2

2n
+O(

k3

n3/2
)

)
≃

≃ lim
n→∞

(
1− σ2k2

2n

)n

= e−σ2k2/2

(14)
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Central Limit Theorem
... and the Gaussian distribution

So far we have found the characteristic function of the z. The p.d.f. is given by
its inverse Fourier transform:

fz(z) =
1

2π

∫ ∞

−∞
dk ϕz(k)e

−ikz =
1

2π

∫ ∞

−∞
dk e−σ2k2/2e−ikz =

=
1

2π

∫ ∞

−∞
dk e−(σk/

√
2+iz/(σ

√
2))

2−z2/(2σ2) =
1√
2πσ

e−z2/(2σ2) (15)

We have derived the Central Limit Theorem
The sum of independent random variables, sampled from the same
distribution, will tend towards a Gaussian distribution, independently of
the initial distribution.

Note: In the proof we used the strong assumption that all moments were finite. In
fact, it is sufficient that the second moment (σ2) is finite, but we shall leave it
without a proof. This holds for most well-behaved p.d.f.’s, but not all!
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Central Limit Theorem
concequences

For the above derivation we used particularly normalised sum (z =
∑n

j=1
xj√
n
)

which led to the variance of the z being equal to the variance of xi.
It is easy to see that:

1 For the algebraic sum z =
∑n

j=1 xj we obtain σz =
√
nσ, or more generally

σ2
z =

∑n
j=1 σ

2
j , (< z >=

∑n
j=1 < xj >).

2 For the algebraic mean z = 1
n

∑n
j=1 xj we obtain σz = 1√

n
σ, or more

generally σ2
z = 1

n

∑n
j=1 σ

2
j , (< z >= 1

n

∑n
j=1 < xj >).

What does it mean?
If we estimate the mean from a sample, we will always tend towards
the true mean,

The uncertainty in our estimate of the mean will decrease as the
sample gets bigger.

Pawel Brückman Statistics in Data Analysis March 20, 2024 21 / 39



Gaussian distribution
... generalisation

Let x = (x1, x2, ..., xn) be a n-dimensional sample space.

n-dimensional Gaussian distribution

f(x;µ, V ) =
1

(2π)n/2|V |1/2
exp

(
−1

2
(x− µ)TV −1(x− µ)

)
(16)

V is the covariance matrix of x and V −1 is its inverse, called the weight matrix.
|V | is the determinant of V .

What does the above give for independent random variables?
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Gaussian distribution
... 2D case

σ1 = 2

σ2 = 3

ρ = 0.7

V =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

V
−1

=
1

(1 − ρ2)

 1

σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1

σ2
2


f(x1, x2;µ1, µ2, σ1, σ2, ρ) =

1

2πσ1σ2

√
1 − ρ2

exp

(
−

1

2(1 − ρ2)

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)])
(17)
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Spread of a pandemic
multiplicative Gaussian

Average transmission rate: 1.75 with standard deviation of 0.2.
Number of infected after 20 epochs:
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Spread of a pandemic
multiplicative Gaussian

Average transmission rate: 2.0 with standard deviation of 0.2.
Number of infected after 20 epochs:
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Spread of a pandemic
multiplicative Gaussian

Average transmission rate: 1.75 with standard deviation of 0.05.
Number of infected after 20 epochs:
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Log-normal distribution

Let y be a Gaussian-distributed random variable with mean and variance µ, σ2.
What is the p.d.f. of x = ey?

g(x) = f(y(x);µ, σ2)

∣∣∣∣dydx
∣∣∣∣ = 1√

2πσ2
exp

(
−(lnx− µ)2

2σ2

)
d(lnx)

dx
(18)

log-normal p.d.f.

f(x;µ, σ2) =
1√
2πσ2

1

x
exp

(
−(lnx− µ)2

2σ2

)
(19)

E[x] = eµ+
1
2σ

2

(20)

V [x] = e2µ+σ2
[
eσ

2

− 1
]

(21)
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Log-normal distribution

∫X
0

1
x e

−(ln(x)−µ)2

2σ2 dx =
∣∣∣ ln(x) = y, 1

xdx = dy
∣∣∣ = ∫ ln(X)

−∞ e
−(y−µ)2

2σ2 dy =
√
2πσ2erf (ln(X))∫∞

0
x 1

x e
−(ln(x)−µ)2

2σ2 dx =
∫∞
−∞ e

−(y−µ)2

2σ2 eydy =
∫∞
−∞ e

−(y−(µ+σ2))2

2σ2 eµ+1
2
σ2

dy =
√
2πσ2eµ+1

2
σ2

mode: eµ−σ2

, median: eµ, mean: eµ+
1
2σ

2

, F (X) = erf(ln(X))
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Log-normal distribution
multiplicative factors

It becomes apparent that if z =
∏n

j=1 xj = e
∑n

j=1 yj , the product of many random

variables tends to a log-normal distribution with µ =
∑n

j=1 µj and σ2 =
∑n

j=1 σ
2
j .

Here, µj = E[lnx] and σ2
j = E[ln2 x]− E[lnx]2. Certainly, ∀jxj > 0.
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Log-normal distribution

In logarythmic scale, log-norm distributions appears as Gaussian (normal).

y = ln(x): 1
xe

−(ln(x)−µ)2

2σ2 = e
−(y2−2µy+µ2)−2σ2y

2σ2 = e−µ+2σ2

e
−(y−(µ−σ2))2

2σ2
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Log-normal distribution
Quantiles

eµ × /eσ : 68.27%, eµ × /e2σ : 95.45%, eµ × /e3σ : 99.73%.
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χ2 test statistic

Let x be a Gaussian-distributed randon variable with known µ and σ. We can
make a simple linear transformation of this variable such, that the distribution
becomes so-called standard normal (µ = 0, σ = 1):

f(x;µ, σ
2
) =

1
√
2πσ2

exp

(
−(x − µ)2

2σ2

)
, x → z =

x − µ

σ
, f(z; 0, 1) =

1
√
2π

exp

(
−z2

2

)
(22)

What is the distribution of u ≡ z2 (E[u] = E[z2] = V [z] = 1)?

χ2
1(u) = 2f(z(u))

∣∣∣∣dzdu
∣∣∣∣ = 1√

2π

1√
u
exp

(
−u

2

)
(23)

Recall: z ∈ (−∞,∞) −→ u = z2 ∈ (0,∞).

χ2
1: mean & variance

E[u] =

∫ ∞

0

uχ2
1(u)du = 1 (24)

V [u] =

∫ ∞

0

u2χ2
1(u)du = 2 (25)
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χ2 test statistic
χ2
1 can be extended to distribution of two independent normal-distributed random

variables u = z21 + z22 by means of Fourier convolution. The operation executed
recurrently provides the expression for any value of n (u =

∑n
i=1 z

2
i ):

χ2
n(u) =

1

2
n
2 Γ

(
n
2

)un
2 −1 exp

(
−u

2

)
(26)

Recall: Γ(n) = (n− 1)!, Γ(z) =
∫∞
0

xz−1e−xdx

χ2
n: mean & variance

E[u] =

∫ ∞

0

uχ2
n(u)du = n (27)

V [u] =

∫ ∞

0

u2χ2
n(u)du = 2n (28)

Note: χ2 distribution has only one parameter, n, called number of degrees of
freedom (nDoF).
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χ2 test statistic
nDoF=1
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χ2 test statistic
nDoF=2

Pawel Brückman Statistics in Data Analysis March 20, 2024 32 / 39



χ2 test statistic
nDoF=3
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χ2 test statistic
nDoF=5
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χ2 test statistic
nDoF=10
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χ2 test statistic
nDoF=30
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χ2 test statistic
nDoF=50
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χ2 test statistic
general n-dimensional case

So far independence of the normal-distributed variables was as assumed. This can
be generalised to n-dimensional Gaussian distribution with an arbitrary covariance
matrix V.

χ2-distributed n-dimensional Gaussian

z = (x− µ)TV−1(x− µ) (29)

is a χ2
n random variable with n DoF’s.
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χ2 distribution

The χ2
k distribution approaches a Gaussian (recall CLT!) for k → ∞. For practical

applications, it can be considered Gaussian for n > O(50) (µ = k, σ =
√
2k).

mode: k − 2, median: ≈ k
(
1− 2

9k

)3
, mean: k, F (X, k) = 1

Γ( k
2 )
γ
(
k
2 ,

X
2

)
γ(s, x) =

∫ x

0
ts−1e−tdt
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Questions

Consider the exponential p.d.f.,

f(x; τ) =
1

τ
e−x/τ , x ≥ 0.

1 Show that the corresponding cumulative distribution is given by

F (x; τ) = 1− e−x/τ

2 Show that the conditional probability to find a value x < x0 + x′ given that
x > x0 is equal to the (unconditional) probability to find x less than x′, i.e.

P (x < x0 + x′|x ≥ x0) = P (x ≤ x′).

Solutions to be sent to me before the next lecture
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Thank you
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Back-up
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Fourier convolution - revisited
z = x+ y, find fz(z) given fx,y(x, y)

P (z ≤ z1) =

∫ z1

−∞
dκfz(κ) =

=

∫ ∞

−∞
dy

∫ z1−y

−∞
dx fx,y(x, y)︸ ︷︷ ︸

joint p.d.f.

=

∫ ∞

−∞
dx

∫ z1−x

−∞
dyfx,y(x, y)

(30)

fz(z) =
dP

dz
=

∫ ∞

−∞
dxfx,y(x, z − x) =

∫ ∞

−∞
dyfx,y(z − y, y) (31)

Hence for independent variables ( fx,y(x, y) = fx(x) ∗ fy(y) ) we obtain:

z = x+ y : Fourier convolution

f(z) =

∫ +∞

−∞
g(x)h(z − x)dx =

∫ +∞

−∞
g(z − y)h(y)dy. (32)
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Log-normal distribution

Gaussian µ, σ2 are additive, log-normal are multiplicative.
The log-normal distribution approaches a Gaussian for σ → 0.
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