Cosmic Watch based detector array – measurements and simulations

Jerzy Pryga

¹University of the National Education Commission

1st CREDO Workshop 16.01.2024

Plan of presentation

- Motivation of the project.
- Oetector array.
- In the second second
- Simulations of scintillator detector.
- Onclusions and prospects for future.

Meeting CREDO objectives

▲ 同 ▶ ▲ 三 ▶

Meeting CREDO objectives

- Global cosmic ray studies.
- Cosmic Rays Ensembles hypothesis.
- Popularization and education.

Meeting CREDO objectives

- Global cosmic ray studies ⇒ correlations and anomalies in secondary cosmic rays flux.
- Cosmic Rays Ensembles hypothesis ⇒ searching for correlations between showers.
- Popularization and education \Rightarrow citizen science.

Creating a perfect detector

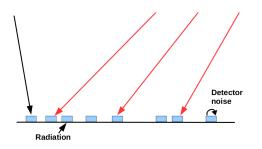

Our DREAM device characteristics:

- Big surface \Rightarrow catches a lot of particles.
- Can identify EAS events.
- Good temporal resolution.
- Can distinguish types of particles.
- Low level of background signals.
- Can be constructed and operated by amateurs.
- Small.
- Inexpensive = affordable by individuals.
- Can operate for a very long period of time.

Creating a perfect detector

Detector array

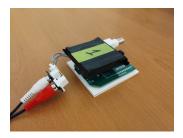
Cosmic Watch [1]:


- Small and relatively cheap.
- Easy to construct and operate.
- Tested design.

Flat coincidence system:

- Can identify EAS events.
- Easy to implement.
- Does not require a lot of space.
- Can be easily expanded.

Detector array

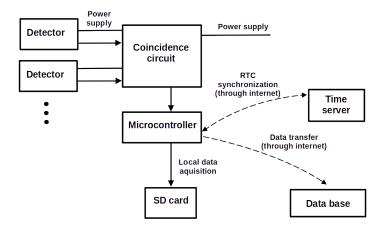


Cosmic Watch [1]:

- Small and relatively cheap.
- Easy to construct and operate.
- Tested design.

Flat coincidence system:

- Can identify EAS events.
- Easy to implement.
- Does not require a lot of space.
- Can be easily expanded.



Creating a real detector

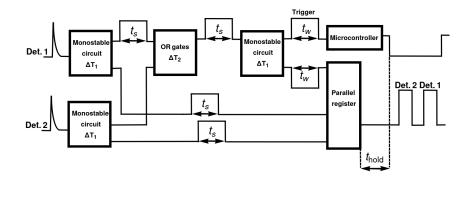
Our REAL device characteristics:

- Big Medium surface ⇒ catches -a lot of particles around 1-2 particle per s.
- Can identify EAS events.
- Good temporal resolution = dozens of μs or better.
- Can distinguish types of particles.
- Relatively low level of background signals.
- Can be constructed and operated by amateurs.
- Small.
- Inexpensive affordable by institutions and some individuals.
- Can operate for a very long period of time.

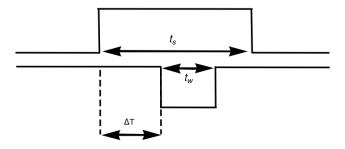
Detector array – electronics

イロト イボト イヨト イヨト

æ


Detector array – electronics

Detector array – electronics



Detector array – signal processing

 t_s - signal length. t_w - window length. t_{hold} - time after which data is read. $\Delta T_{1,2}$ - delays. Jerzy Pryze Tests of small shower array 8/32

Detector array – signal processing

$$\Delta T = \Delta T_1 + \Delta T_2.$$

$$t_s > t_w + \Delta T = t_0$$

 t_0 – real length of coincidence window. Maximum time interval between two particles to be in coincidence.

Detector array – data collection

Currently:

- Only local data acquisition on SD card.
- \bullet Very slow ≈ 0.015 s.

Future:

- Faster local data acquisition.
- Data send directly to the server.
- Both ethernet and Wi-Fi usage.

Detector array – data format

Example of current data format:

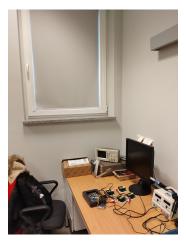
Day	Month	Year	Hour	Minute	Second Temp.	(degC)	P(hPa)	Input 1	Input 2	Input 3	Input 4
02	01	2024	14	43	40.99056	27.80	1004.91	0	0	1	0
02	01	2024	14	43	42.31707	27.99	1004.91	0	1	0	0
02	01	2024	14	43	43.58618	27.62	1005.79	0	0	1	0
02	01	2024	14	43	44.10784	27.99	1004.39	Θ	0	0	1
02	01	2024	14	43	45.29840	27.80	1004.39	0	0	0	1
02	01	2024	14	43	45.40017	27.99	1004.91	0	1	0	0
02	01	2024	14	43	45.42907	27.99	1005.79	0	0	0	1

•

02	01	2024	14	44	13.01129	27.80	1006.31 1	Θ	Θ	Θ
02	01	2024	14	44	13.05172	27.99	1002.98 0	1	0	0
02	01	2024	14	44	13.28063	27.99	1002.46 0	Θ	1	0
02	01	2024	14	44	13.56262	27.62	1004.39 0	1	0	1
02	01	2024	14	44	14.10897	27.99	1004.39 1	O	0	0
02	01	2024	14	44	14.50643	27.80	1005.79 0	0	0	1

⇒ →

Detector array – prize


Estimated costs of components:

- **(**) One simplified Cosmic Watch: \approx **125 USD**
- **2** Master unit: \approx **150 USD**
- Sequipment for outdoors measurement: < 50 USD

For target array of 8 detectors:

< 1200 USD + assembly costs

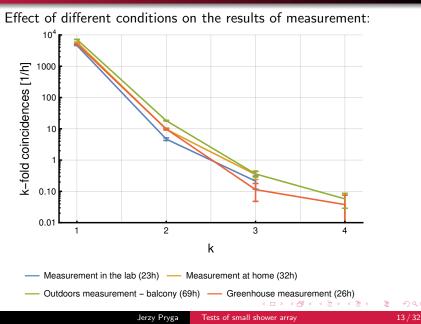
Measurements – different conditions

Place where first measurement was conducted – ground floor in 5 storage building, not many windows.

< A >

Measurements – different conditions

Place where second measurement was conducted – 1st floor in 5 storage building, more windows. Third measurement was conducted on the balcony, around 2 m from here.


Measurements – different conditions

Place where fourth measurement was conducted – greenhouse at the top of the building.

Image: A matrix

Measurements – different conditions

Measurements – different conditions

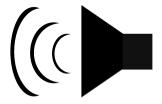
Effect of different conditions on the results of measurement:

[1/h]	Lab	Home	Balcony	Greenhouse		
<i>k</i> = 1	4630	5880	7170	5150		
<i>k</i> = 2	4.7	9.7	18.2	9.8		

• • = • • = •

Measurements – different conditions

Effect of different conditions on the results of measurement:


[1/h]	Lab	Home	Balcony	Greenhouse
<i>k</i> = 1	4630	5880	7170	5150
<i>k</i> = 2	4.7	9.7	18.2	9.8

Conclusions:

Measurements conditions have significant impact on the results

Measurements – sonification of data [2]

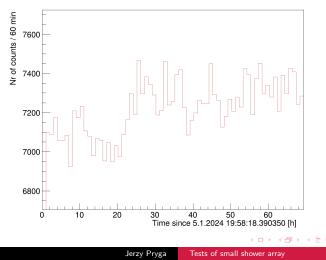
Listen to the data.



Can you hear any pattern?

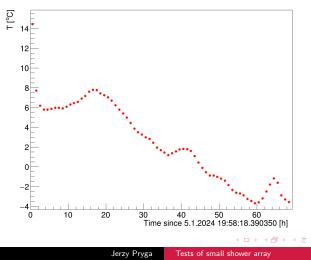
Measurements – interesting behaviour

Little increase in frequency of signals observed in outdoors measurement:


Number of k=1 signals in time

Measurements – interesting behaviour

Little increase in frequency of signals observed in outdoors measurement:


Number of k=1 signals in time

Measurements – interesting behaviour

Little increase in frequency of signals observed in outdoors measurement:

Temperature in time

Measurements – interesting behaviour

Little increase in frequency of signals observed in outdoors measurement:

Pressure in time

To answer this we should...

To answer this we should...

• ...simulate detector's response to interaction with cosmic rays,

To answer this we should...

- ...simulate detector's response to interaction with cosmic rays,
- ...simulate secondary cosmic rays with CORSIKA (not ready to present yet),

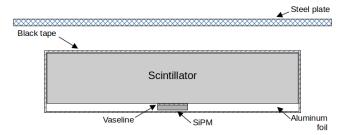
To answer this we should...

- ...simulate detector's response to interaction with cosmic rays,
- ...simulate secondary cosmic rays with CORSIKA (not ready to present yet),
- ...and compare estimations with results of measurement (not ready to present yet).

Simulations of detectors sensitivity to CR

Purpose:

Estimate sensitivity of used detectors, η , to different secondary cosmic rays. Study effects of different shielding above the detector.


Used software [3–5]:

Geant4 – enables full control over geometry of the experiment, composition of its elements, includes physics of particles interactions with media and is easy to operate.

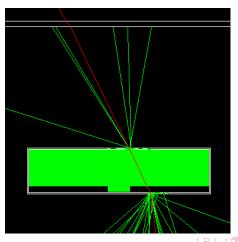
Considered particles:

Muons, electrons & positrons, and photons.

Simulations – detector's geometry

- Stainless steel plate: d = 1.5 mm
- Aluminum foil: d = 0.14 mm, reflectivity = 85 %
- Black tape: d = 0.36 mm
- Plastic scintillator: $5 \times 5 \times 1$ cm
- Vaseline: 0.6 mm
- SiPM: $0.6 \times 0.6 \times 0.1$ cm

Simulations – detector's composition [6]

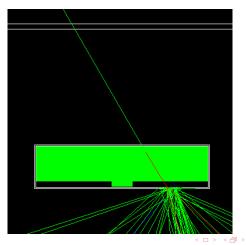

BC408 scintillator		AI foil	Black tape	Steel	SiPM	Vaseline
Density [g cm ⁻³]	1.032	2.7	1.28	7.9	2.329	0.82
Composition	H, C	Al	H, C, CI	Fe, Cr, Ni, C	Si	H, C, N
Ratio of elements	11:10	1	3:2:1		1	15:15:1
% of elements				70.87, 20,		
				9.25, 0.06		
Refractive index	1.58	1.44	1.54	$n(\lambda)$	1.59	1.467
$(300 < \lambda < 950 \text{ nm})$				(1.65 – 2.95)		
Absorption index [cm ⁻¹]	0.001	966850	0.69339	1606300	-	≈ 0

æ

< □ > < □ > < □ >

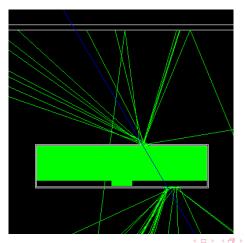
Simulations – visualisation

Exemplary events visualisation: e^- , $\theta = 30^\circ$, $\epsilon = 0.01$ GeV



Jerzy Pryga Tests of small shower array

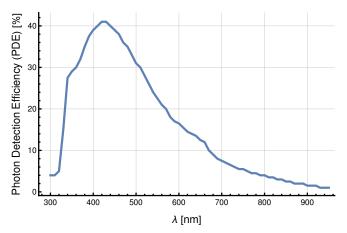
20 / 32


Simulations – visualisation

Exemplary events visualisation: γ , θ = 30°, ϵ = 0.03 GeV

Simulations – visualisation

Exemplary events visualisation: mu^+ , $\theta = 30^\circ$, $\epsilon = 1$ GeV



Jerzy Pryga Tests of small shower array

20 / 32

Simulations – SiPM sensitivity

Simulations – calculations of signals amplitude

Simulations output:

 N_{ph} - number of photons detected by SiPM (after applying PDE function).

Simulations – calculations of signals amplitude

Simulations output:

 N_{ph} - number of photons detected by SiPM (after applying PDE function).

Amplitude of produced signal:

$$V_{s} = \Delta V \cdot c_{p} \cdot M \left(1 - \exp\left(-\frac{N_{ph}}{M}\right) \right).$$
(1)

 c_p – percent of SiPM surface covered by microcells, M – number of microcells on SiPM.

Simulations – calculations of signals amplitude

Simulations output:

 N_{ph} - number of photons detected by SiPM (after applying PDE function).

Amplitude of produced signal:

$$V_{s} = \Delta V \cdot c_{p} \cdot M \left(1 - \exp\left(-\frac{N_{ph}}{M}\right) \right).$$
(1)

 c_p – percent of SiPM surface covered by microcells, M – number of microcells on SiPM.

Microcell discharge voltage:

$$\Delta V = \frac{G(V_{SiPM}) \cdot q}{C}, \qquad (2)$$

 $G(V_{SiPM})$ – gain, q – electron charge, C – microcell's electrical capacity.

Simulations – local sensitivity

Sensitivity of our detector:

$$\eta = \frac{n(V_s > V_{min})}{n},\tag{3}$$

n - number of simulated events, V_{min} - minimal amplitude that can be processed by electronics (after amplification). **Sensitivity variability:**

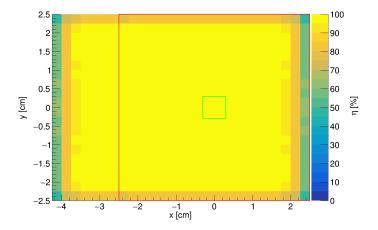
$$\eta = \eta(x_{det}, y_{det}, \theta, \phi).$$
(4)


Effective sensitivity:

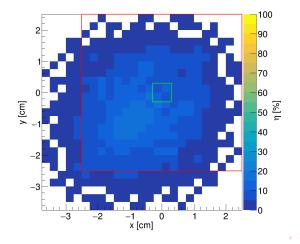
$$\eta_{eff} = \frac{1}{A} \int_{A} \eta(x, y)_{\theta, \phi} \, dx \, dy, \tag{5}$$

A – detector's area of the surface.

Simulations – mapping detector

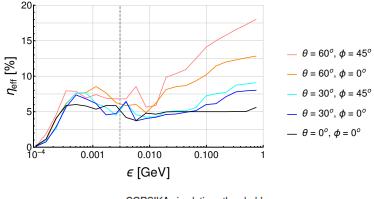

Map of detector's sensitivity: e⁻, $\theta = 0^{\circ}$, $\phi = 0^{\circ}$ $\eta(x,y)$ for $\epsilon = 0.005766$ GeV

Jerzy Pryga Tests of small shower array


Simulations – mapping detector

Map of detector's sensitivity: mu^+ , $\theta = 60^\circ$, $\phi = 0^\circ$ $\eta(x,y)$ for $\epsilon = 0.090000$ GeV

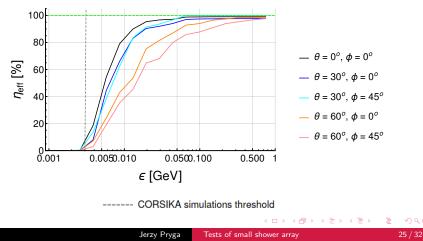
Simulations – mapping detector


Map of detector's sensitivity: γ , $\theta = 60^{\circ}$, $\phi = 45^{\circ}$ $\eta(x,y)$ for $\epsilon = 0.000225$ GeV

Simulations – effective sensitivity

Photons:

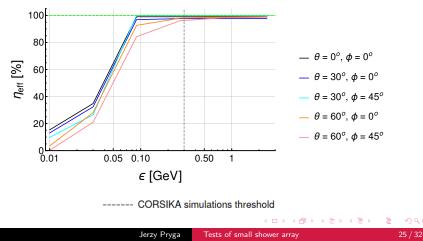
Sensitivity to photons increase with inclination angle and does not drop to 0 below simulations threshold.



----- CORSIKA simulations threshold

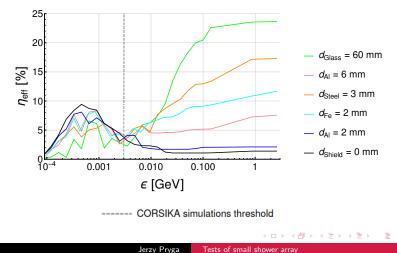
Simulations – effective sensitivity

Electrons:


Sensitivity to photons drops with inclination angle, below simulations threshold is close to none and reaches maximum at certain value.

Simulations – effective sensitivity

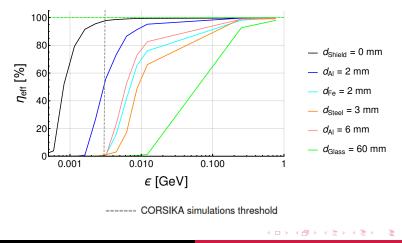
Muons:


Sensitivity to photons drops slightly with inclination angle and reaches maximum at value slightly lower than simulations threshold.

Simulations – different shielding

Photons:

Different thickness and kind of shielding has huge impact on the sensitivity.



26 / 32

Simulations – different shielding

Electrons:

Different thickness and kind of shielding has huge impact on the sensitivity.

Conclusions – measurements

- Frequency of signals is sensitive to measurements conditions everything above detectors.
- **②** Frequency is signals and coincidence events is relatively high.
- Oetector is able to safely operate in difficult weather conditions.

Conclusions – simulations

- Our scintillator detector is mostly sesnitive to muons and high energy electrons.
- Sensitivity to photons is of the order of 10% low but not negligible.
- Oetector's sensitivity is highly sensitive to the shielding which particles have to penetrate.
- Iffective sensitivity changes with increasing inclination angle of arriving particles.

28 / 32

- Construct second array consisting of 8 detectors.
- Perform long term outdoors measurements.
- Optimize detectors software.
- **③** Standardise data format and develop remote data acquisition.
- **O** Prepare full documentation of the project and publish it.

Thank you for your attention!

Bibliografia I

- [1] SN Axani, K Frankiewicz, and JM Conrad. Cosmicwatch: The desktop muon detector. *J. Instrum*, 13:03, 2018.
- [2] Twotune, (accesed:2022).
- [3] Sea Agostinelli, John Allison, K al Amako, John Apostolakis, H Araujo, Pedro Arce, Makoto Asai, D Axen, Swagato Banerjee, GJNI Barrand, et al. Geant4—a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250–303, 2003.
- [4] John Allison, Katsuya Amako, John Apostolakis, Pedro Arce, Makoto Asai, Tsukasa Aso, Enrico Bagli, A Bagulya, S Banerjee, GJNI Barrand, et al. Recent developments in geant4. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835:186–225, 2016.

Bibliografia II

- [5] John Allison, Katsuya Amako, JEA Apostolakis, HAAH Araujo, P Arce Dubois, MAAM Asai, GABG Barrand, RACR Capra, SACS Chauvie, RACR Chytracek, et al. Geant4 developments and applications. *IEEE Transactions on nuclear science*, 53(1):270–278, 2006.
- [6] S Riggi, P La Rocca, E Leonora, D Lo Presti, GS Pappalardo, F Riggi, and GV Russo. Geant4 simulation of plastic scintillator strips with embedded optical fibers for a prototype of tomographic system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 624(3):583–590, 2010.