Haptic Arduino and CME Mass Calculation

Speaker: Ruoning Lan

Coronal Mass Ejection (CME)

- Ejection of solar materials -> charged particles
- Particles affected by electromagnetic space environment -> Thomson scattering
- Mass calculation depends on angle.

MULTIPOINT DETECTIONS OF A CORONAL MASS EJECTION

CME Mass Calculation: Geometry [2]

- Data: coronagraph from LASCO (H α)
- P: CME edge; Q: observer -> angle: ε ~ R

- mass is localized at plane of sky -> Howard et al. [3] corrected projection effect
- Sky-plane (all CME), θ =0, defines $sin\Omega = \frac{1}{R}$
- and so

$$sin\Omega = \frac{cos\theta}{R_0}$$

A schematic diagram of CME [2]

b)

CME Mass Calculation: Thomson Scattering [2]

$$m = \frac{B_{obs}}{B_e(\theta)} \times 1.97 \times 10^{-27} \, Kg$$

- Be(θ) is calculated using four Thomson Scattering formulas.
- Bobs is calibrated using the images obtained.

A (R) = $cos\Omega sin^2\Omega$ B(R) = $-\frac{1}{8}\left[1-3\sin^2\Omega-\cos^2\Omega\left(\frac{1+3\sin^2\Omega}{\sin\Omega}\right)\ln\left(\frac{1+\sin\Omega}{\cos\Omega}\right)\right]$ $C(R) = \frac{4}{3} - \cos\Omega - \frac{\cos^2 \Omega}{2}$ D(R) = $-\frac{1}{8}\left[5+\sin^2\Omega-\cos^2\Omega\left(\frac{5-\sin^2\Omega}{\sin\Omega}\right)\ln\left(\frac{1+\sin\Omega}{\cos\Omega}\right)\right]$ $B_{\rho}(\theta) =$ $\frac{\sigma\pi}{2} \left[2 \left(C + u(D - C) \right) \cos^2 \theta \left(A + u(B - A) \right) \right]$

Working on Bobs

 Related to area and pixelation (given by image)

 Sonification (Diaz-Merced) to remeasure Bobs, using Orchestar

LASCO, C2 image with a Ha superimposed [2]

Orchestar by Hyman et al. (2019)

Audio to Haptic

- Accessibility
- Aid with sound
- Decipher data from noises

Cardiff University: Black Hole Hunter [5]

https://ep.ego-gw.eu/SonificationTraining/HomePage.html

Haptic Arduino (in Progress)

Color Arduino

Motor Arduino

Wiring

Color Arduino [4]

Motor Arduino

Dual role BLEUART

Bridge-> transfer messages back and forth

Advertise, scan, callback, send data

Current Progress

 Connected the two microcontrollers via Bluetooth dual role, and the motor is vibrating upon connection

Still need to transfer data, and set up corresponding waveforms

References

[1] "Multipoint Detections of a Coronal Mass Ejection." ESA, *The European Space Agency*, 2020, https://www.esa.int/ESA_Multimedia/Images/2020/12/Multipoint_detections_of_a_coronal_mass_ejection.

[2] AL OBAİD, Mays. "Mass Determination of Coronal Mass Ejection by Thomson Equations." *Acta Materialia Turcica*, 2020, 4(5), 1–8.

[3] Howard, T. A., D. Nandy, and A. C. Koepke, "Kinematic properties of solar coronal mass ejections: Correction for projection effects in spacecraft coronagraph measurements", *J. Geophys. Res.,* 2008, 113, A01104, doi:10.1029/2007JA012500.

[4] Hyman, Soley, et al. "Orchestar: Teaching the Color/Temperature Relation through Sound." *NASA/ADS*, 2019, https://ui.adsabs.harvard.edu/abs/2019AAS...23410403H/abstract.

[5] Black Hole Hunter, Cardiff University Gravitational Physics Group, https://blackholehunter.org/.

[6] Dual Roles BLEUART, *Adafruit*, https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/dual-roles-bleuart.