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Motivations

• The combination of a random phenomenon and a periodic one gives rise to a process
which is not periodic but whose statistical characteristics vary periodically with time.
This process is called cyclostationary (CS).

• Almost all modulated signals adopted in telecommunications, telemetry, radar, and
sonar can be modeled as cyclostationary processes.

• In radio astronomy, periodicity results from revolution and rotation of planets and on
pulsation of stars.
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Motivations (cont’d)

• If more periodicities with incommensurate periods are present, then the statistical char-
acteristics are almost-periodic functions of time and the process is called
almost-cyclostationary (ACS).

• Many physical phenomena give rise to signals with statistical functions exhibiting ir-
regular cyclicity:

– Intentional or unintentional time- or frequency-warping due to variations ot timing
parameters;

– Doppler effect due to relative motion between transmitter and receiver with generic
motion law.
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Almost-Cyclostationary (ACS)
Signals

E{x(n+m) x(n)}= ∑
α

Rα

x (m) e j2παn

The autocorrelation function of the signal x(n) is an almost-periodic function of n having
Fourier series expansion with frequencies α (cycle frequencies) and coefficients Rα

x (m)
(cyclic autocorrelation functions).

Rα

x (m) = lim
N→∞

1
2N +1

N

∑
n=−N

E{x(n+m) x(n)} e− j2παn
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Jointly Almost-Cyclostationary Signals

E{y1(n+m) y2(n)}= ∑
β

Rα

y1y2
(τ) e j2παt

The cross-correlation function of the processes y1(n) and y2(n) is an almost-periodic
function of n having Fourier series expansion with frequencies β (cycle frequencies) and
coefficients Rα

y1y2
(m) (cyclic cross-correlation functions).

Rα

y1y2
(m) = lim

N→∞

1
2N +1

N

∑
n=−N

E{y1(n+m) y2(n)} e− j2παn
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Fraction-of-Time (FOT) Probability

• In several applications, the signal is a single time series. That is, an ensemble of real-
izations, namely a stochastic process, does not exist.

• The statistical characterization is more suitably made in the functional of fraction-of-
time (FOT) approach.

• In the FOT approach, starting from a single time series, all familiar probabilistic pa-
rameters such as mean, autocorrelation, distribution, moments, and cumulants, are con-
structed starting from the unique available time series.

• A new operator, the almost-periodic component extraction operator E{α}{·}, replaces
the ensemble average E{·}.
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Fraction-of-Time (FOT) Probability (cont’d)

The function

Fx(n;ξ ) = E{α}{u(ξ − x(n))}

= ∑
α

Fα

x (ξ ) e j2παn

as a function of ξ , is a valid cumulative distribution function, almost-periodic with respect
to n.

• u(·) = unit step function: u(ξ ) = 1 for ξ > 0 and u(ξ ) = 0 for ξ < 0

• E{α}{·} = almost-periodic component extraction operator: it extracts all the finite-
strength additive sine-wave components of its argument. It is the expectation operator
in the FOT approach.
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Fraction-of-Time (FOT) Probability (cont’d)

Joint cumulative distribution function (CDF) of y1(n+m) and y2(n)

Fy1y2(n,m;ξ1ξ2) = E{α}{u(ξ1− y1(n+m))u(ξ2− y2(n))}

= ∑
α

Fα

y1y2
(m;ξ1ξ2) e j2παn

Fourier coefficients

Fα

y1y2
(m;ξ1ξ2) = lim

N→∞

1
2N +1

N

∑
n=−N

u(ξ1− y1(n+m))u(ξ2− y2(n)) e− j2παn
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CREDO Collaboration

• The cyclostationary model has been exploited to confirm the main results presented in

P. Homola, V. Marchenko, A. Napolitano, et al., “Observation of large scale precursor
correlations between cosmic rays and earthquakes with a periodicity similar to the solar
cycle”, Journal of Atmospheric and Solar-Terrestrial Physics (JASTP), Vol. 247, art.
106068, 2023.

• The following time series

– average variation of the cosmic ray detection rate
– earthquake sum magnitude
– Sunspot monthly mean

are shown to be pairwise jointly cyclostationary time series and the Fourier coefficients
of their cross statistical functions are estimated. The results show the existence of peri-
odic correlation or statistical dependence between pairs of these time series.
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JASTP 2023

Statistical Dependence Between Cosmic Rays (y1) and Earthquakes (y2). (Left)
magnitude of the estimated cyclic joint CDF Fα

y1y2
(m;ξ1,ξ2) as a function of α and m

(2-dimensional grayscale elevation map); (Right) energy of the estimated joint CDF as a
function of α .
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JASTP 2023 (cont’d)

Cyclic Cross-Correlation Between Cosmic Rays (y1) and Sunspots (y2). (Left)
magnitude of the estimated cyclic cross-correlation function Rα

y1y2
(m) as a function of α

and m (2-dimensional grayscale elevation map); (Right) energy of the estimated cyclic
cross-correlation as a function of α .
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JASTP 2023 (cont’d)

Cyclic Cross-Correlation Between Earthquakes (y1) and Sunspots (y2). (Left) mag-
nitude of the estimated cyclic cross-correlation function Rα

y1y2
(m) as a function of α

and m (2-dimensional grayscale elevation map); (Right) energy of the estimated cyclic
cross-correlation as a function of α .
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Generalized Almost-Cyclostationarity
(GACS) Signals

• Time-stretching and chirp modulation of x(t):

y(t) = a x(s(t− τ0)) e j2πνt e jπγt2

– s = time-stretch factor
– τ0 = time delay
– ν = frequency shift
– γ = chirp rate

• x(t) ACS =⇒ y(t) GACS

• Multivariate statistical functions of y(t) are almost-periodic functions of time whose
generalized Fourier series have both coefficients and frequencies depending on lag pa-
rameters.
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Spectrally Correlated
(SC) Signals

• Frequency warping and filtering of x(t):

Y ( f ) = H( f )X(Ψ( f ))

– X( f ) = Fourier transform of x(t)
– Ψ( f ) = frequency-warping function
– H( f ) = harmonic response of a linear time-invariant filter
– Y ( f ) = Fourier transform of y(t)

• x(t) ACS =⇒ y(t) SC

• Statistical correlation exists between distinct spectral components of y(t) at frequencies
f1 and f2 with f2 = Ψ( f1).
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Oscillatory Almost-Cyclostationary
(OACS) Signals

• Time-warping and amplitude modulation of x(t):

y(t) = a(t) x(ψ(t))

– a(t) = amplitude-modulation function
– ψ(t) = time-warping function

• x(t) ACS =⇒ y(t) OACS

• multivariate statistical functions of y(t) are amplitude and angle modulated sinusoidal
functions.

• Doppler effect due to relative motion between transmitter and receiver with generic
motion law.
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