Exploring Phase Space Deformation through a Correspondence between Modified Gravity and GUP, and Earthquakes as Testing Grounds

Aneta Wojnar* Aleksander Kozak**

*Complutense University of Madrid **University of Wroclaw

1st CREDO Visegrad Workshop 2024 Kraków, Poland I am spearheading an application, along with a number of colleagues, for COST Action 2024, with the goal of bringing together researchers in the areas of (quantum) gravity, particle physics, seismology, and solid-state physics.

awojnar@ucm.es

Motivation:

- To understand effects of gravity on thermodynamic systems
- To constrain theories of modified and quantum gravity

Plan of the talk:

- Description of thermodynamic systems in the presence of gravity
- Seismic data as a probe of gravitational models
- Constraining QG and MG with seismic data
- Improving the method by
 - incorporating rotation and the newest data (better description of the Earth's interior)
 - taking into account gravity in the thermodynamic description and
 - more accurate depiction of inter-atomic interactions and the nature of excited states

Gravity vs matter: motivation based on a number of indications

- Effective quantities: opacity¹, ...
- Modifications introduced by modified gravity to pressure²
- Chemical reactions rates depend on gravity³
- Specific heat and crystallization depend on modified gravity⁴
- Chemical potential depends on gravity⁵
- Elementary particle interactions modified by modified gravity (dependence of the metric on the local energy-momentum distributions⁶
- EoS depends on relativistic effects introduced by GR⁷
- Thermonuclear processes...?⁸
- Fermi and Bose equations of state depend on (modified/quantum) gravity⁹
- ¹J. Sakstein, PRD 92 (2015) 124045; ...
- ²H-Ch. Kim, PRD 89 (2014) 064001
- ³P. Lecca, J. Phys.: Conf. Ser. 2090 (2021) 012034
- ⁴S. Kalita, L. Sarmah, AW, PRD 107 (2023) 4, 044072
- ⁵I.K. Kulikov, P.I. Pronin, Int. J. Theor. Phys. 34, (1995) 9
- ⁶A.D.I Latorre, G.J. Olmo, M. Ronco, PRB 780, 294 (2018)
- ⁷G.M. Hossain, S. Mandal, JCAP 02 (2021) 026; PRD 104 (2021) 123005
- ⁸J. Sakstein, PRD 92 (2015) 124045; AW, PRD 103 (2021) 4, 044037; M. Guerrero, AW, in preparation

⁹ AW, PRD 107 (2023) 4, 044025; A. Pachol, AW, Class.Quant.Grav. 40 (2023) 19, 195021; AW, PRD 109 (2024) 2, 024011; AW arXiv:2401.01159

Observation 1:

Modifies Heisenberg uncertainty principle (GUP)

$$\Delta x_i \Delta p_i \geq rac{\hbar}{2} \Big(1 + ext{modification} \Big)$$

or/and dispersion relation

$$E^2 + p^2 (1 + \text{modification}) = m^2$$

¹⁰LQG, Doubly Special Relativity, String Theory, Noncommunative geometry,...

Quantum gravity and thermodynamics

Observation 2:

The weighted phase space volume is modified (D - dim of the phase space).

 $\frac{d^D \mathbf{x} d^D \mathbf{p}}{1 + \text{modification}}$

Consequence: modified partition function ($z = e^{\mu/k_BT}$)

$$\ln \mathcal{Z} = \frac{V}{(2\pi\hbar)^3} \frac{g}{\pm 1} \int \ln \left(1 \pm z e^{-E/k_B T}\right) \frac{d^3 p}{1 + \text{modification}}$$

Conclusion: Quantum Gravity modifies equations of state since

$$P = k_B T \frac{\partial}{\partial V} \ln \mathcal{Z},$$

$$n = k_B T \frac{\partial}{\partial \mu} \ln \mathcal{Z} \mid_{T,V},$$

$$U = k_B T^2 \frac{\partial}{\partial T} \ln \mathcal{Z} \mid_{z,V}$$

Observation 3: MG as an effective theory derived from QG

MG vs QG^{11}

Palatini gravity (f(R), EiBI)

$$\nabla^{2}\phi = \frac{\kappa}{2}\left(\rho + \bar{\alpha}\nabla^{2}\rho\right)$$

$$\downarrow \text{ with } \frac{d\Phi}{dr} = -\rho^{-1}\frac{dP_{p}}{dr}$$

$$P_{T\to0} = K\rho^{\frac{5}{3}} + \sigma K_{2}\rho^{2}$$

$$\downarrow \text{ with } f(E) = \left(1 + z^{-1}e^{E/k_{B}T}\right)^{-1}$$

$$P = \frac{g_{s}}{(2\pi^{2}\hbar^{3})^{3}}\int \frac{c^{2}p}{E}f(E)\left(\frac{p^{3}}{3} + \sigma\frac{p^{4}}{4}\right)4\pi d\rho$$

$$\downarrow$$

$$P = k_{B}T\frac{g_{s}}{a(2\pi^{2}\hbar^{3})^{3}}\int \ln(1 + aze^{-\frac{E}{k_{B}T}})\frac{4\pi\rho^{2}dp}{(1 - \sigma\rho)^{5}}$$

The partition function in the grand-canonical ensemble:

$$\ln Z = \frac{V}{(2\pi\hbar)^3} \frac{g}{a} \int \ln \left[1 + aze^{-E/k_B T}\right] \frac{d^3 p}{(1 - \sigma p)^b}$$

ightarrow linear GUP with b=1

Snyder model (NCG, qGUP)

$$\nabla^{2}\phi = 4\pi G\rho - \tilde{\epsilon}\nabla^{2}\rho^{\frac{4}{3}}$$

$$\uparrow^{\text{with } \frac{d\Phi}{dr} = -\rho^{-1}\frac{dP_{\rho}}{dr}}$$

$$P_{T\to0} = K_{1}\rho^{\frac{5}{3}}\left[1 - \epsilon\rho^{\frac{2}{3}}\right]$$

$$\uparrow^{\text{with } f(E)=1 \text{ if } E \leq E_{F}; \text{ 0 otherwise}}$$

$$P = \frac{1}{\pi^{2}\pi^{3}}\int \frac{1}{3}\rho^{3}{}_{2}F_{1}\left(\frac{3}{2},1,\frac{5}{2},-\rho^{2}\Omega\right)f(E)\frac{c^{2}\rho}{E}d\rho,$$

$$\uparrow$$

The partition function in the grand-canonical ensemble:

$$\begin{split} \ln Z &= \frac{V}{(2\pi\hbar)^3} \frac{g}{a} \int \ln \left[1 + az e^{-E/k_B T} \right] \frac{4\pi p^2 dp}{(1 + \Omega p^2)} \\ \rightarrow \text{ quadratic GUP } \left(\Omega &= \beta \left(4\chi - \frac{3}{2} \right) \right) \\ p_i, \hat{x}_j \right] &= -i\hbar \delta_{ij} \left(1 + \beta \left(\chi - \frac{1}{2} \right) p_k p_k \right) - 2i\hbar \chi \beta p_i p_j + O(\beta^2) \end{split}$$

 $^{11}\text{A.Pachoł, AW, EPJC 83 (2023) 12, 1097; AW, PRD 109 (2024) 2, 024011; AF Ali, AW, arXiv:2401.05941}$

Terrestrial (exo-)planets in modified gravity¹²

Figure: Mass-radius relation for small planets composed of two layers: iron core and perovskite silicate mantle. The results were obtained for different values of the Starobinsky parameter $\alpha = 2c^2 \kappa^2 \beta$ in Palatini gravity. The solar-system planets were included, as well as some TRAPPIST-1 exoplanets, denoted by letters.

 $^{^{12}{\}rm A.}$ Kozak, AW, IJGMMP 19 (2022) Supp01, 2250157; E. Agol et al., Planet. Sci. 2(2021) 1.

Modified Poisson equation

$$\nabla^2 \Phi \approx \frac{1}{2}(\rho + \text{modification})$$

For spherical-symmetric spacetime the gravitational potential the hydrostatic equilibrium equation

$$rac{d\Phi}{dr} = -
ho^{-1}rac{dP}{dr},$$
 $M = \int 4\pi' ilde{r}^2
ho(ilde{r}) d ilde{r},$

+ matter description (EoS or **seismic data**, temperature dependence,...) + eventual equations for additional fields

A new method of testing theories of gravity proposed¹³

¹³A. Kozak, AW, Phys.Rev.D 104 (2021) 8, 084097

Terrestrial planets - seismology vs gravity l $^{\rm 15}$

The Earth's density profile (inner and outer core, mantle + outer layers given by the Birch law)

On the RHS: Palatini gravity ($\Delta \rho = 600$, $\rho_m = 5550$); on the left: Preliminary Reference Earth Model (PREM) A. M. Dziewonski, D. L. Anderson, Phys. Earth Plan. Int. 25 (1981) 297.

Exoplanets properties: central values and CMB are affected by modified gravity¹⁴

¹⁴A. Kozak, AW, Universe 8 (2021) 1, 3

¹⁵A. Kozak, AW, PRD 104 (2021) 8, 084097; IJGMMP 19 (2022) Supp01, 2250157; Phys. Rev. D 108 (2023) 4, 044055

Terrestrial planets - seismology vs gravity II ¹⁶

- No exchange of heat between different layers (adiabatic compression)
- The planet is a spherical-symmetric ball in hydrostatic equilibrium
- The planet consists of radially symmetric shells with the given density jump between the inner and outer core $\Delta \rho = 600$, central density $\rho_c = 13050$ and density at the mantle's base $\rho_m = 5563$ (in kg/m³) PREM
- Mass $M = 4\pi \int_0^R r^2 \rho(r) dr$ and moment of inertia $I = \frac{8}{3}\pi \int_0^R r^4 \rho(r) dr$ where R is Earth's radius, play a role of the constraints (given by observations with a high accuracy)
- The outer layers' density profile described by Birch law $ho = a + b v_{
 ho}$

 v_p is the longitudinal elastic wave. It contributes, together with the transverse elastic wave v_s , to the seismic parameter Φ_s and the elastic properties of an isotropic material

$$\Phi_s = v_p^2 - \frac{4}{3}v_s^2 = \frac{K}{\rho}, \quad K = \frac{dP}{d\ln\rho}$$

The hydrostatic equilibrium equation in MG:

$$rac{d
ho}{dr}=-
ho\left(rac{{\cal GM}(r)}{r^2}+{
m modification}
ight)\Phi_{s}^{-1},$$

¹⁶A. Kozak, AW, Phys.Rev.D 108 (2023) 4, 044055

Theories of gravity constrained so far

Modified Poisson equation

$$abla^2 \phi(\mathbf{x}) = 4\pi G \Big(
ho(\mathbf{x}) +
abla^2 lpha \big(\mathbf{x},
ho(\mathbf{x}) \big) \Big),$$

• Palatini f(R) and Eddington-inspired Born-Infeld gravity (Ricci-based)¹⁷: $\alpha(r, \rho) = \epsilon/2\rho(r)$, and $\epsilon = 4\beta$

 $-2\times10^9\lesssim\beta\lesssim10^9m^2$ for Palatini , $-8\times10^9\lesssim\varepsilon\lesssim4\times10^9m^2$ for EiBl

• DHOST theories $\alpha(r, \rho) = \frac{Y}{4}r^2\rho(r)$

$$-10^{-3} \lesssim Y \lesssim 10^{-3}$$

- Quantum gravity: Snyder and qGUP ($eta_0:=eta M_P^2 c^2$): $eta_0 < 4.67 imes 10^{44}$
- $\bullet\,$ Quantum gravity: linear GUP: $-6\times 10^{22} \lesssim \sigma \lesssim 3\times 10^{22}$ s/kg m

 $^{^{17}}$ New cosmological data provides bounds $|\beta| < 10^{49}$ m², D.Aguiar+,AK,AW, JCAP 01 (2024) 011

The density profile given by the PREM (Newtonian)

- The density profile given by the preliminary reference Earth model in which Newtonian gravity is assumed.
- The velocities' plots are obtained from data without using any theory of gravity.
- The primary waves are the same as the longitudinal waves, while the secondary waves are transverse in nature.
- The units are in km/s for velocities, while the densities are in kg/m³.

Terrestrial planets - seismology vs gravity III 18

Constraining theory (moment of inertia $I=8.01736\pm0.00097\times10^{37}$ kg m² and mass $M=5.9722\pm0.0006\times10^{24}$ kg)

- Relative absolute error for the mass and the moment of inertia of Earth. Red dots represent errors for the moment of inertia, while blue ones correspond to the mass.
- The dark green stripe represents a 1σ region for both quantities, while the light green denotes a 2σ region.
- The green region denotes the uncertainties for both mass and moment of inertia because, for either of them, the ratio of σ to the mean value is similar (≈ 0.01%).
- The values of (ρ_m, ρ_c, Δρ) chosen for numerical calculations are (5563, 13050, 600)kg/m³, respectively.

¹⁸A. Kozak, AW, Phys.Rev.D 108 (2023) 4, 044055

The uncertainties for the models' parameters I

Figure: 1 σ confidence regions of the theory parameters (ρ_c , ρ_m , $\Delta\rho$) for different values of the β parameter, being of order 10⁹ m². The darker color corresponds to lower values of the central density, while the brighter one - to higher. The range of the central density is shown in the color bar below the figures. The units are kg/m³.

The uncertainties for the models' parameters II

- There always exists a region for a given value of the theory parameter for which all three density parameters result in a good agreement with experimental measurements
- $\Delta \rho$ and ρ_c admit much wider ranges of their values, not taking out of the 1σ region.
- ρ_m can differ by no more than 2 3 kg m⁻³ from the value assumed in our calculations in order to remain within the 1σ region
- To incorporate bigger uncertainty of ρ_m , increase in the range of ρ_m and $\Delta \rho$, and/or the range of β would be necessary
- Large uncertainty in the determination of ρ_m is related to a bigger range of β parameter's allowed values
- Example: for $\beta = 10^9 \text{m}^2$, deviations from the PREM ρ_m ($\beta = 0$) leading to the same values of M and I, is 0.02% while, in the worst case, for the uncertainty of the PREM model 50 kg m⁻³, is 0.9% ($\Delta \rho$ and ρ_c unchanged). It increases the bound to 10^{11}m^2 .

Astrophysical bounds on Generalized Uncertainty Principle¹⁹

Our bound when more realistic physics taken into account

 $\beta_0 \leq 1.36 \times 10^{48}$ from low-mass stars (A. Pachol, AW, Eur.Phys.J.C 83 (2023) 12, 1097)

 $\beta_0 < 4.67 imes 10^{44}$ from Earthquakes (A. Kozak, A. Pachol, AW, arXiv:2310.00913)

experiment	ref.	upper bound on β
equivalence principle (pendula)	[240]	$\frac{10^{20}}{10^{73}}$
gravitational bar detectors	[387, 388]	$\frac{10^{33}}{10^{93}}$
equivalence principle (atoms)	[389]	10^{45}
perihelion precession (solar system)	[123, 155]	10^{69}
perihelion precession (pulsars)	[123]	10^{71}
gravitational redshift	[155]	10^{76}
black hole quasi normal modes	[251]	10^{77}
light deflection	$[\underline{123}, \underline{155}]$	10^{78}
time delay of light	[155]	10^{81}
black hole shadow	[247]	10^{90}
black hole shadow	[251, 259]	10^{90}

 $^{19}\mathrm{See}$ review by Bosso+ 2023, arXiv:2305.16193

Improving the method and future constraints

- Spherical-symmetric 1-dim Earth with adiabatic compression:
 - to introduce the complexities of Earth's true geometry (it rotates)
 - to estimate the equatorial moment of inertia relative to the polar moment by applying travel time ellipticity corrections to PREM²⁰
 - to recognize the imperfections of layers and accounting for variable density jumps
 - to take into account a temperature variation with depth.
- Core description:
 - PREM does not describe well the boundaries of the outer and inner core
 - to use a more precise model like AK135-F²¹ it incorporates the complexities of core waves
 - to use equations of state for modeling core density and bulk moduli²² (improving the uncertainties in density jumps at the inner and outer core boundaries).
- Birch law a probable reevaluation when dealing with seismic data from Mars (the coefficients obtained experimentally).

²⁰B. L. N. Kennett, O. Gudmundsson, Geophysical Journal International 127.1 (1996): 40-48.

²¹B. L. N. Kennett, E. R. Engdahl, R. Buland, Geophysical Journal International 122.1 (1995): 108-124.

²²J. C. E. Irving, S. Cottaar, V Lekic, Science advances 4.6 (2018): eaar2538.

A. Wojnar, A. Kozak

Gravity vs matter

Improving the thermodynamic description and future plans

- To consider gravity effects in the elasti moduli and lattice description of the Earth's materials corrections to the thermal energy (in progress)
- To take into account gravity effects in equations of state, melting and transport properties (in progress)
- To consider modified dispersion relation in the above calculations

I am spearheading an application, along with a number of colleagues, for COST Action 2024, with the goal of bringing together researchers in the areas of (quantum) gravity, seismology, and solid-state physics.

awojnar@ucm.es

- Tests of gravity with the use of stars and substellar objects (BD, (exo)-planets, seismology)
- We must be consistent in describing physical systems in different scales
- We should consider more realistic models on both sides: gravity and matter - rotating bodies, magnetic fields, ..., opacities (atmosphere), mirophysics description - to obtained better bounds and understand the gravity effects
- More research on matter properties in the MG and QG frameworks is necessary

Thanks!

awojnar@ucm.es

aleksander.kozak@uwr.edu.pl

Palatini gravity in a nutshell

$$S = S_{\rm g} + S_{\rm m} = rac{1}{2\kappa}\int\sqrt{-g}f(\hat{R})d^4x + S_{\rm m}(g_{\mu
u},\psi_m),$$

where $\hat{R} = \hat{R}^{\mu\nu}(\hat{\Gamma})g_{\mu\nu}$. Modified field equations wrt $g_{\mu\nu}$ and $\hat{\Gamma}$ are

$$\begin{aligned} f'(\hat{R})\hat{R}_{\mu\nu} &- \frac{1}{2}f(\hat{R})g_{\mu\nu} = \kappa T_{\mu\nu}, \quad \text{GR:} \quad R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \kappa T_{\mu\nu} \\ \hat{\nabla}_{\beta}(\sqrt{-g}f'(\hat{R})g^{\mu\nu}) &= 0 \quad \to \quad h_{\mu\nu} = f'(\hat{R})g_{\mu\nu}. \end{aligned}$$

The trace of the first MFE wrt $g_{\mu\nu}$ gives the structural equation

$$f'(\hat{R})\hat{R}-2f(\hat{R})=\kappa\mathcal{T},$$

where \mathcal{T} is a trace of e-m tensor $T_{\mu\nu}$ wrt $g_{\mu\nu}$, provides $\hat{R} = \hat{R}(\mathcal{T})$.

- Non-linear system of a second order PDE.
- $f(\hat{R}) = \hat{R} 2\Lambda$ is fully equivalent to the Einstein $R 2\Lambda$.
- Any $f(\hat{R})$ vacuum solution \rightarrow Einstein vacuum solution with the cosmological constant.
- Modifies non- and relativistic stellar structure equations²³.

²³K. Kainulainen et al, PRD. 76 (2007) 043503; AW, EPJC 78 (2018) 421; AW EPJC 79 (2019) 51; A. Sergyeyev, AW, EPJC 80

Snyder model (Snyder 1947, Chang et al. 2002, Battisti&Meljanac 2009)

One can consider many realizations of deformed phase spaces which correspond to Snyder non-commutative space time $[\hat{x}_{\mu}, \hat{x}_{\nu}] = i \hbar \beta M_{\mu\nu}$. β is related with the minimal (Planck) length.

The deformation of the quantum-mechanical phase space (Heisenberg algebra), in the most general realization (parametrized by χ) of Snyder model, up to the linear order in the non-commutativity parameter β , can be written as:

$$[p_i, \hat{x}_k] = -i \hbar \delta_{ik} \left(1 + \beta \left(\chi - \frac{1}{2} \right) p_j p_j \right) - 2i \hbar \chi \beta p_i \rho_k + O(\beta^2).$$

The original Snyder case is recovered for $\chi = 1/2$. The most popular GUP is given by $\chi = 1/2$ and $\chi = 0$. The Heisenberg algebra generators \hat{x}_i and p_i can be represented on momentum space wave functions $\phi(p)$ as:

$$\hat{x}_{i}\phi(p) = i\hbar\left(\left(1 + \beta\left(\chi - \frac{1}{2}\right)p_{k}p_{k}\right)\frac{\partial}{\partial p_{i}} + 2\chi\beta p_{i}p_{j}\frac{\partial}{\partial p_{j}} + \gamma p_{i}\right)\phi(p),$$
$$p_{i}\phi(p) = p_{i}\phi(p)$$

 γ is an arbitrary constant, which does not enter the commutation relations, but affects the definition of the scalar product in momentum space (physical choice for $\gamma = 0$).

To define symmetric operators the new inner product in momentum space must take the form:

$$\langle \psi, \phi \rangle = \int \frac{d^D p}{(1 + \beta(3\chi - \frac{1}{2})p^2)^{\alpha}} \psi^*(p)\phi(p) =: \int \frac{d^D p}{(1 + \omega p^2)^{\alpha}} \psi^*(p)\phi(p)$$

where $\alpha = \frac{\beta(2\xi+D\xi-\frac{1}{2})-\gamma}{\beta(3\chi-\frac{1}{2})}$ and $\omega = \beta(3\chi-\frac{1}{2})$. Note that for $\xi = 1/6$ there is no deformation in the measure.

One can introduce $\alpha \omega = \beta(5\xi - \frac{1}{2}) - \gamma$ for D=3 which includes deformation parameter β and choice of realization χ .

Fermi-Dirac equation of state²⁴

Let us consider a system of N fermions with the energy states E_i . The partition function in the grand-canonical ensemble

$$\ln Z = \sum_{i} \ln \left[1 + z e^{-E_i/k_B T} \right]$$

where T is the temperature, k_B Boltzmann constant, $z = e^{\mu/k_BT}$ while μ is the chemical potential.

Considering a large volume and 3D

$$\sum_{i}
ightarrow rac{1}{(2\pi\hbar)^3} \int rac{d^3x d^3p}{(1+\omega p^2)^{lpha}},$$

the partition function (note that $f(E) = (1 + ze^{-E/k_BT})^{-1}$ is the F-D distribution function)

$$\ln Z = \frac{V}{(2\pi\hbar)^3} g \int \ln \left[1 + z e^{-E/k_B T}\right] \frac{d^3 p}{(1+\omega p^2)^{\alpha}} ,$$

where g is a spin of a particle, $V := \int d^3x$ is the volume of the cell (of the configuration space), while $E = (p^2c^2 + m^2c^4)^{1/2}$. The pressure is given by

$$P = \frac{1}{\pi^{2} \pi^{3}} \int \frac{1}{3} p^{3} {}_{2}F_{1}\left(\frac{3}{2}, \alpha, \frac{5}{2}, -p^{2}\omega\right) f(E) \frac{c^{2}p}{E} dp \stackrel{|\omega p^{2}| < 1}{=} \frac{1}{\pi^{2} \pi^{3}} \int \frac{p^{3}}{3} \left(\sum_{k=0}^{\infty} \frac{(\alpha)_{k}\left(\frac{3}{2}\right)_{k} (-\omega p^{2})^{k}}{\left(\frac{5}{2}\right)_{k} k!}\right) f(E) \frac{c^{2}p}{E} dp$$

²⁴A. Pachol, AW, Class.Quant.Grav. 40 (2023) 19, 195021

Non-relativistic ($E \approx \frac{p^2}{2m_e}$) degenerate Fermi gas²⁵

$$P = \frac{1}{3\pi^{2}\hbar^{3}} \int \left(\frac{(2m_{e}E)^{\frac{3}{2}}}{5} - \frac{3\alpha\omega}{35} (2m_{e}E)^{\frac{5}{2}} \right) f(E) dE.$$

In the limit $T \rightarrow 0$, the chemical potential $\mu \approx E_F$

$$f(E) = \begin{cases} 1 & \text{if } E \leq E_F \\ 0 & \text{otherwise.} \end{cases}$$

$$P_{T\rightarrow 0}=\frac{2}{5}\nu E_F^{\frac{5}{2}}\left(1-\frac{3\alpha\omega}{7}(2m_e)E_F\right),$$

where we have defined $v = \frac{(2m_e)^{\frac{2}{3}}}{3\pi^2 \hbar^3}$.

²⁵A. Pachol, AW, Class.Quant.Grav. 40 (2023) 19, 195021

Non-relativistic ($E \approx \frac{p^2}{2m_e}$) degenerate Fermi gas²⁷

Let us use the definition of the measure of electron degeneracy ($u = (3\pi^2 \hbar^3 N_A)^{\frac{2}{3}}/2m_e$)

$$\psi = \frac{k_B T}{E_F} = \frac{2m_e k_B T}{\left(3\pi^2 \hbar^3\right)^{2/3}} \left[\frac{\mu_e}{\rho N_A}\right]^{2/3} \equiv u^{-1} k_B T \left[\frac{\mu_e}{\rho}\right]^{2/3}$$

to rewrite the pressure as a mixture of two polytropes (compare to MG case²⁶)

$$P_{T\to 0} = \frac{2}{5} \nu u^{\frac{5}{2}} \left(\frac{\rho}{\mu_e}\right)^{\frac{5}{3}} \left[1 - \frac{3u}{7} \alpha \omega (2m_e) \left(\frac{\rho}{\mu_e}\right)^{\frac{2}{3}}\right] =: K_1 \rho^{\Gamma_1} - \alpha \omega K_2 \rho^{\Gamma_2}$$

where $K_1 = \frac{2}{5} \nu u^{\frac{5}{2}} \mu_e^{-\frac{5}{3}}$, $\Gamma_1 = 5/3$ and $K_2 = \frac{12}{35} \nu u^{\frac{7}{2}} m_e \mu_e^{-\frac{7}{3}}$, $\Gamma_2 = 7/3$.

Interpretation from the bulk modulus (incompressibility)

$$B=\frac{dP}{d\ln\rho}=(1-\frac{6}{7}\alpha\omega m_e E_F)\rho^{\frac{5}{3}},$$

For incompressible solids $B \rightarrow \infty$ ($\alpha \omega < 0$) while for infinitely compressible one B = 0 ($\alpha \omega > 0$).

²⁷A. Pachol, AW, Class.Quant.Grav. 40 (2023) 19, 195021

²⁶Kim, H. C. (2014), PRD 89(6), 064001; AW, PRD 107 (2023) 4, 044025

Non-relativistic objects²⁹

Non-relativistic Poisson, hydrostatic equilibrium, and mass equations

$$abla^2 \phi = 4\pi G
ho, \qquad \frac{d\phi}{dr} = -
ho^{-1} \frac{dP}{dr}, \qquad M = \int 4\pi' \tilde{r}^2
ho(\tilde{r}) d\tilde{r}.$$

Applying our Fermi equation of state $\left(\varepsilon = \frac{6}{7} \left(\frac{3\pi^2 h^3}{N_A \mu_e}\right)^{\frac{2}{3}} \alpha \omega\right)$

$$P = K\rho^{\frac{5}{3}} \left[1 - \varepsilon \rho^{\frac{2}{3}} \right]$$

we can write down modified Lane-Emden equation

$$rac{d}{d\xi}\left\{ \xi^2 \, rac{d heta}{d\xi} \left[1 - \epsilon heta
ight]
ight\} = - \xi^2 heta^{rac{3}{2}}$$
 ,

Such an equation also results from MG²⁸ with a non-modified polytrope $(\tilde{\epsilon} = \frac{7}{4} K \epsilon)$

$$\nabla^2 \phi = 4\pi G \rho - \tilde{\epsilon} \nabla^2 \rho^{\frac{4}{3}}$$

²⁸ For review, see G. Olmo, D. Rubiera-Garcia, AW, Phys. Rept. 876 (2020) 1-75 ²⁹ A. Pachol, AW, arXiv:2307.03520