A survey of double logarithmical asymptotics of space-like parton correlators

Yizhuang Liu, Jagiellonian University

The talk is based on speaker's theoretical works (together with Ji & Su & Liu & others) in:

- 1. Threshold resummation for computing large-x parton distribution through large-momentum effective theory (arxiv: 2305.04416)
 (Threshold limit of perturbative quark quasi-PDF)
- 2. Computing Light-Front Wave Functions Without Light-Front Quantization: A Large-Momentum Effective Theory Approach (Phys. Rev. D 105 (2022)) (Large $2xP_z$ limit of quasi-LFWF amplitudes)
- 3. Transverse-momentum-dependent parton distribution functions from large-momentum effective theory (Phys.Lett.B 811 (2020), 135946) && TMD soft function from large-momentum effective theory (Nucl.Phys.B 955 (2020) 115054) (Large $2xP_z$ limit of quasi-TMDPDFs)
- 4. Large-momentum effective theory (Rev. Mod. Phys. 93 (2021))

Outline

- Introduction to marginal-PT near UV fixed point.
- The HL Sudakov universality class.
- l. Overview.
- 2. Quasi-TMDPDF && LFWF amplitudes.
- 3. Reduced soft factor. Lattice application.
- 4. Threshold limit of quark quasi-PDF.

UV fixed-point of local-QFT

- Successful of QFT in late 1940s: g 2; lamb shift.
- Development of renormalization perturbation theory: Power-counting theorems/Symanzik polynomials/BPHZ....
- However, $-Q^2 \rightarrow \infty$ limit not under control. Large logarithms/Landau poles. Proper interpretation not clear.
- Early 1970s, multiple clues: Perturbative asymptotic freedom && RGE-analysis /Scaling theory..... strongly suggest local-QFTs, defined through scaling limits, have universal short distance limit in terms of relevant/marginally-relevant perturbation to UV CFT.
- QCD is the most well-known example which approaches the UV limit marginally.

General features of Marginal Perturbation Theory

• Euclidean correlator: $G(zm) = z^{2d_0} \langle 0|O(z)O(0)|0 \rangle$. Universal $z^2 \to 0$ asymptotic expansion:

$$G(zm) \to \alpha(z)^{\frac{-2\gamma_0^1}{\beta_0}} \exp \int_0^{\alpha(z)} (\frac{2\gamma_0^1}{\beta_0\alpha} - \frac{2\gamma_0(\alpha)}{\beta(\alpha)}) d\alpha \ G_{PT}[\alpha(z)] + O(mz).$$

- 1. $\alpha(z) \to \frac{1}{\beta^0 \ln(\frac{1}{mz})}$: the running coupling constant.
- 2. Minimal scheme: $\frac{1}{\alpha} + \frac{\beta_1}{\beta_0} \ln \alpha = \beta_0 \ln \frac{1}{m^* z}$. Each m^* specifies a scheme (such as \overline{MS}).
- 3. γ_0^1 : the LO anomalous dimension.
- 4. REG resumed form of the perturbative series calculated through Feynman diagrams.

General features of PT

- Anomalous dimension $\gamma_O(\alpha)$ has no explicit $\ln \mu$ dependence. Single \log evolution.
- Requires specific singularity structure of Feynman integrals. Key structure: Natural factorization in each *Hepp sector* through maximal-forest of singularity.
- UV-IR conspiracy between leading-power and high-power. Example: pole mass vs linear divergence in HQET.

The Bjorken limit.

• Next simplest object. Structure functions. Not completely Euclidean.

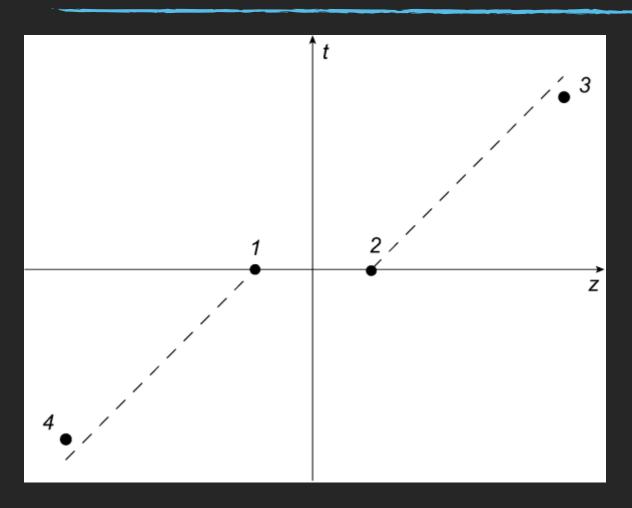
$$F(Q^2, P \cdot Q) = \int \frac{d^4z}{(2\pi)^4} e^{iz \cdot Q} \langle P|J(z)J(0)|P\rangle_c.$$

- The Bjorken limit : $-Q^2 \to \infty$ at fixed $x_B = -\frac{Q^2}{2P \cdot Q} \& \& -z^2 \to 0$ at fixed $\lambda = z \cdot P$.
- This limit can still be controlled by marginal perturbation to UV CFT.

1.
$$F_n(Q^2) \sim C_n^q(\alpha(Q)) \exp(\int_{\alpha(\mu)}^{\alpha(Q)} \frac{\gamma_n(\alpha) - 2\gamma_J(\alpha)}{\beta(\alpha)} d\alpha) O_n(\mu) + \text{high power}$$

2.
$$F_n(z^2) \sim \widetilde{C_n}^q(\alpha(z)) \exp(\int_{\alpha(\mu)}^{\alpha(z)} \frac{\gamma_n(\alpha) - 2\gamma_J(\alpha)}{\beta(\alpha)} d\alpha) O_n(\mu) + \text{high power}$$

The Bjorken limit in CFT.



The Bjorken limit in coordinate space for $\langle O(x_3)O(x_2)O(x_1)O(x_4)\rangle$

•
$$x_1 = -x_2 = (0,1)$$

•
$$x_3 = -x_4 = (t, t + \lambda)$$

- $t \to +\infty$, $\lambda > 1$ fixed.
 - Controlled by OPE with $\min\{\Delta J\}$.

Bjorken limit in marginal theory: taming logarithms

- Additional structure to control the logarithms.
- 1. PT version $F_n^q(Q^2, \alpha(\mu))$ does satisfies single logarithm RGE in IR (DGLAP).
- 2. IR anomalous dimension of $F_n^q(Q^2, \alpha(\mu))$ matches with UV of $O_n(\mu)$.
- 3. $f(\lambda,\mu) = \sum_{n=0}^{\infty} \frac{1}{n!} O_n(\mu) \lambda^n = \frac{1}{2P^+} \langle P | \bar{\psi}(x^-) W(x^-,0) \gamma^+ \psi(0) | P \rangle$ naturally interpretated as parton distribution function. Consistent with parton picture.
- 4. Supported by CSS leading region analysis && SCET && LR OPE.

Beyond single-log asymptotics

- Are there other limits which can be controlled by marginal perturbation to UV CFT? (universal asymptotics)
- Certainly, not all "high-energy limits" are universal. Example: Regge limit in large N_c 2D QCD. $Im\ A(s,0) \sim s^{-2\beta-1}$.

$$\pi\beta\cot\pi\beta = -\frac{m_q^2}{2\sigma_T} + 1.$$

 Nevertheless, there does exists universal "high-energy" limits which are not single-log type.

Double log asymptotics & Light-Light Sudakov

The famous double-log object: light-quark Sudakov form factor.

•
$$\langle p' | \overline{\psi} \Gamma \psi | p \rangle$$
 with $Q^2 = (p - p')^2 \rightarrow \infty$, $p^2 = p'^2 = 0$.

- 1. Double logarithm at one-loop.
- 2. No power-counting theorem proven yet. RGE conjectured and verified to four loops.
- 3. Key feature: anomalous dimension contains logarithm, but only one!

$$\mu \frac{d \ln H_{LL}(Q^2,\alpha(\mu))}{d\mu} = 2\Gamma_{cusp}(\alpha) \ln \frac{Q^2}{\mu^2} + 2\gamma_V(\alpha).$$

Exact integral equation in planar N=4.

Light-Light Sudakov universality class: TMD factorization

- Appearing in TMD factorizations && threshold limits.
- TMD factorization/resummation $F(Q^2, b_{\perp}, x_A, x_B) = H_{LL}(\alpha(Q)) \exp[S_{suda}(\alpha(Q))] \exp[2K(b_{\perp}) \ln Q^2 b_{\perp}^2] \times f_{TMD}(x_A, b_{\perp}) f_{TMD}(x_B, b_{\perp}) + \text{high power}$
- 1. The $H_{LL} \exp S_{Suda}$: RGE resumed Sudakov form factor.
- 2. The $f_{TMD}(x, b_{\perp})$: universal transverse-momentum dependent PDFs.
- 3. New feature: the Rapidity anomalous dimension (Collins-Soper kernel) $2K(b_{\perp})$ for light-like gauge-link staples at separation b_{\perp} .
- 4. Heuristic "proofs": CSS argument based on reduced diagram of leading region && SCET.

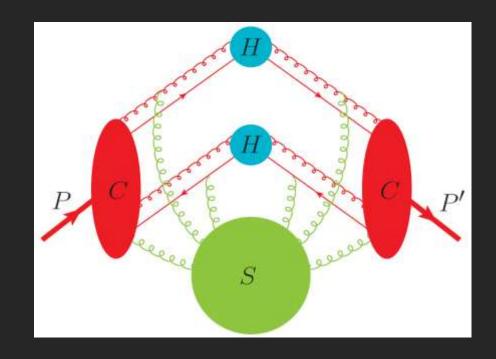
Light-Light Sudakov universality class: threshold limit

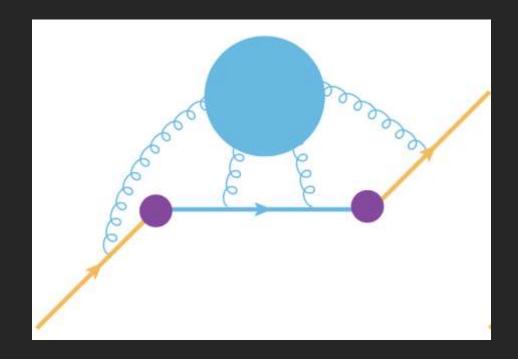
- 1. The same LL Sudakov form factor also appears in threshold limits of various objects. For example: quark structure function in PT && hard kernel for DIS.
- 2. Threshold limit: $x \to 1$ in $F_q(\frac{Q^2}{\mu^2}, x, \alpha(\mu))$.
- 3. To leading power $(1-x)^{-1}$, one has threshold factorization

$$F_q\left(\frac{Q^2}{\mu^2}, x, \alpha(\mu)\right) = H_{LL}\left(\frac{Q^2}{\mu^2}, \alpha(\mu)\right) J_q\left(Q^2(1-x), \alpha(\mu)\right) + O(1-x)$$

4. LL Sudakov form factor & quark jet function J_q .

LL Sudakov. TMD && Threshold





TMD factorization for a space-like form-factor

Threshold limit of quark structure function

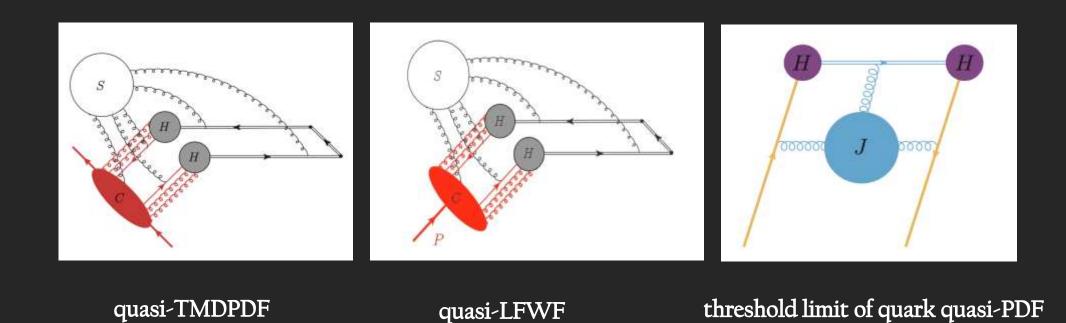
Outline

- High energy limit of QFT : factorization && scaling && universality.
- The HL Sudakov universality class .
- 1. Overview
- 2. Quasi-TMDPDF & LFWF amplitudes.
- 3. Reduced soft factor. Lattice calculation.
- 4. Threshold limit of quark quasi-PDF.

Overview of the class

- Correlators with space-like gauge-links naturally arise in lattice parton distributions.
- LL current: $J^{\mu}(x) = \bar{q}\gamma^{\mu}q \rightarrow \text{HL current: } \tilde{J}(x) = \bar{q}Q_{n_z}$.
- $Q_{n_z}(z)\overline{Q}_{n_z}(0) = Pexp \ ig \int_0^z dz' A_z(z') : \text{space-like} \text{ gauge-link}.$
- 1. Quark quasi-PDF: $\tilde{f}_q(x, \zeta_z = 4x^2P_z^2)$ in threshold limit $x \to 1$.
- 2. Quasi-TMDPDF: $\tilde{f}(x, \zeta_z = 4x^2 P_z^2, b_{\perp})$ at large ζ_z .
- 3. Quasi-LFWF of light meson: $\tilde{\psi}_{\bar{q}q}$ $(x, \bar{x}, \zeta_z, \bar{\zeta}_z, b_{\perp})$ at large ζ_z .

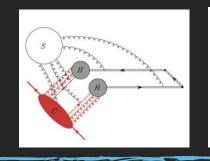
Overview of the class

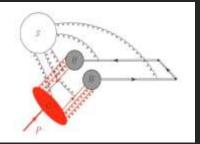


Space-time pictures of the HL Sudakov Universality Class

The HL Sudakov form factor

- HL Sudakov form factor: $H_{HL}^{\sigma}(\ln \frac{\zeta_z}{\mu^2}, \alpha(\mu))$.
- 1. External $p^2 = 0$ && $n^2 = -1$, $\zeta_z = 4(p \cdot n)^2 \neq 0$.
- 2. NL: $H_{HL}^{\pm} = 1 + \frac{\alpha c_F}{4\pi} \left(-4 \frac{5\pi^2}{6} + 2L_{\pm} L_{\pm}^2 \right)$ with $L_{\pm} = \ln \frac{\zeta_z}{\mu^2} \pm i\pi$.
- 3. RGE: $\mu \frac{d}{d\mu} \ln H_{HL}^{\sigma} \left(\ln \frac{\zeta_z}{\mu^2}, \alpha(\mu) \right) = \Gamma_{cusp} (\alpha) \ln \frac{\zeta_z}{\mu^2} + \tilde{\gamma}_H(\alpha) i\pi\sigma \Gamma_{cusp} (\alpha)$.
- 4. Imaginary part depends on $\sigma = sign(-n \cdot p)$.
- 5. Single log anomalous dimension $\tilde{\gamma}_H = 2\gamma_F + \gamma_V + 2\gamma_{HL} \gamma_s$.





• Quasi TMDPDF factorizes in the large $\zeta_z = 4x^2 P_z^2$ limit as $\tilde{f}(x, b_{\perp}, \zeta_z) = |H_{HL}(\zeta_z)|^2 \exp(\tilde{S}(\zeta_z)) \exp(\frac{1}{2}K(b_{\perp})\ln \zeta_z b_{\perp}^2) \times S_r^{-\frac{1}{2}}(b_{\perp}) f_{TMD}(x, b_{\perp}) + \text{high power}$

Quasi LFWF amplitudes factorizes similarly:

$$\begin{split} \tilde{\psi}_{q\bar{q}}(x,b_{\perp},\zeta_z) = \\ H_{HL}(\zeta_z)H_{HL}(\bar{\zeta}_z) \exp(\tilde{S}(\zeta_z,\bar{\zeta}_z)) \exp(\frac{1}{2}K(b_{\perp})\ln\sqrt{\bar{\zeta}_z}\zeta_zb_{\perp}^2) \\ \times S_r^{-\frac{1}{2}}(b_{\perp})\psi_{q\bar{q}}(x,b_{\perp}) + \text{high power} \end{split}$$

Quasi-TMDPDF/LFWF at large ζ_z

$$\tilde{f}(x, b_{\perp}, \zeta_z) = |H_{HL}(\zeta_z)|^2 \exp(\tilde{S}(\zeta_z)) \exp(\frac{1}{2}K(b_{\perp})\ln \zeta_z b_{\perp}^2)$$
$$\times S_r^{-\frac{1}{2}}(b_{\perp}) f_{TMD}(x, b_{\perp}) + \text{high power}$$

HL

Sudakov

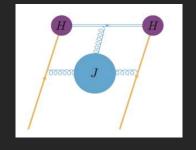
- 1. The HL form factor at scale $\mu = \zeta_z$: $H_{HL}(\zeta_z)$.
- 2. The RGE re-summation factor: $\exp \tilde{S}(\zeta_z)$.
- 3. Asymptotically, $\tilde{S}(\zeta_z) \to -\frac{\Gamma_0}{\beta_0^2 \alpha(\zeta_z)} \ln \frac{e}{\alpha(\zeta_z)}$. Allows systematic expansion in increasing orders of $\alpha(\zeta_z)$.
- The rapidity evolution factor: $\exp \frac{1}{2}K(b_{\perp})\ln \zeta_z b_{\perp}^2$.
- The standard TMDPDF/LFWF amplitudes : $f_{TMD}(x, b_{\perp})$ & $\psi_{q\bar{q}}(x, \bar{x}, b_{\perp})$.

The reduced soft factor S_r

- The $S_r(b_{\perp})$ is a new NP function: the reduced soft factor.
- Defined through ratio of three TMD soft factors.

$$S_{r}(b_{\perp},\mu) = \lim_{\delta^{+},\delta^{-}\to 0} \frac{S(b_{\perp},\mu,\delta^{+},\delta^{-})}{S(b_{\perp},\mu,\delta^{+},n_{z})S(b_{\perp},\mu,\delta^{-},-n_{z})} \frac{\sqrt{n_{z}}}{\sqrt{n_{z}}} \frac{\sqrt{n_{z}}}{\sqrt{n_{z}}}$$

- 1. Standard TMD soft factor: $S(b_{\perp}, \mu, \delta^{+}, \delta^{-})$.
- 2. The HL soft factor: $S(b_{\perp}, \mu, \delta^{+}, n_{z})$. Both light (δ^{+}) and heavy (n_{z}) Wilson-lines.
- 3. Only a single log anomalous dimension: $\gamma_{HH} \equiv 2\gamma_{HL} \gamma_s \equiv \Gamma_s$.
- Insensitive to time-ordering. Interpreted as LFWF of a $\bar{Q}Q$ pair.



Threshold limit of quark quasi-PDF

- The perturbative quark quasi-PDF has threshold logarithms as $y \rightarrow 1$.
- Factorizable in terms of HL Sudakov hard kernel and space-like jet function at power $(y-1)^{-1}$. Applies to quasi-GPD/DA as well.
- One has

$$\tilde{f}(y,L_z,\alpha(\mu))|_{y\to 1}=\left|H_{HL}(L_z,\alpha(\mu))\right|^2J_f((1-y)p_z,L_z,\alpha(\mu)).$$

- 1. Reproduces the correct $y \to 1$ limit from exact NNLO quark quasi-PDF.
- 2. Allowing extraction of H_{HL} at NNLO. $L_z = \ln \frac{4p_z^2}{\mu^2}$

Space-like jet function

- The J_f combines a space-like jet function J(|z|) with phase factor of HL Sudakov form factor.
- In coordinate space,

$$J_f(|z|, sign(z), L_z) = J(|z|) \exp[iArg(H_{HL}^{sign(z)}(L_z))]$$

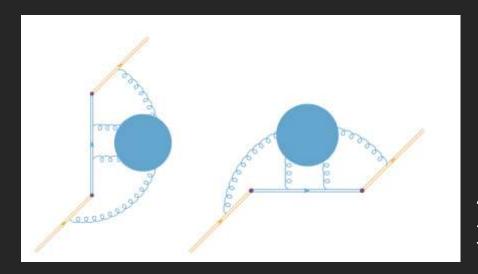
- I. Imaginary part crucial to match to the threshold limit DGLAP $P(z)|_{z\to 1} = \frac{{}^{2}\Gamma_{cusp}}{(1-z)^{+}} (\gamma_V + \gamma_s)\delta(1-z).$
- 2. J(|z|) relates to a time-like version J(t) through analytic continuation $t \to -i|z|$ to all orders.
- 3. J(t) equals to a known heavy-quark jet function at NNLO**.

Space-like jet function

RGE of space-like jet function

1.
$$\mu \frac{d}{d\mu} \ln J(|z|\mu, \alpha(\mu)) = \Gamma_{cusp}(\alpha) \ln \frac{e^{2\gamma_E \mu^2 z^2}}{4} - \tilde{\gamma}_J(\alpha)$$
.

- 2. Single log anomalous dimension $\tilde{\gamma}_J = 2\gamma_{HL} 2\gamma_s$.
- 3. Allows threshold RGE re-summation.



The time-like jet function J(t) (left) and space like jet function J(|z|) (right).

Application: HL Sudakov form factor at NNLO

- As an application, we extracted the NNLO HL Sudakov.
- All logarithms are determined by the β function and anomalous dimensions.
- The constant term of $\ln |H_{HL}|^2$ and the phase angle at NNLO reads

1.
$$c_H = \left(\frac{241\zeta_3}{144\pi^2} + \frac{11\pi^2}{320} - \frac{559}{1728} - \frac{971}{324\pi^2}\right) C_F C_A + \left(\frac{-45\zeta_3 - 2\pi^4 + 30\pi^2 - 30}{24\pi^2}\right) C_F^2 + \left(\frac{36\zeta_3 + 51\pi^2 + 1312}{1296\pi^2}\right) C_F n_f T_F$$

2.
$$c_a = \left(\frac{11}{4\pi^2} - \frac{11}{24} - \frac{475}{108\pi^2}\right) C_F C_A + \left(-\frac{3\zeta_3}{\pi^2} + \frac{7}{12} - \frac{1}{2\pi^2}\right) C_F^2 + \left(\frac{1}{6} + \frac{38}{27\pi^2}\right) C_F n_f T_F$$

Agrees with direct calculation.

Relationship of Anomalous Dimensions

- Double log part: light-like cusp anomalous dimension $\Gamma_{cusp}(\alpha)$.
- Single log part: linear combination of four independent ones.

Quantity	Single-Log anomalous dimensions
Light-light Sudakov form factor H_{LL}	$2\gamma_V$
TMD soft factor $S(\delta, b)$	$-2\gamma_s$
Quasi TMDPDF $\tilde{f}(x,b)$	$2\gamma_F$
Space like jet function $J(z)$	$-2\gamma_{HL}+2\gamma_s$
Quark splitting function $P_{qq}(t) _{t\to 1}$	$-(\gamma_V + \gamma_s)\delta(t-1)$
Light-cone TMDPDF $f_{TMD}(x, \xi, b)$	$-\gamma_V$
Reduced soft factor $S_r(b)$	$2\gamma_{HL}-\gamma_s$
Heavy-light Sudakov form factor H_{HL}	$\gamma_V + 2\gamma_F + 2\gamma_{HL} - \gamma_s$

Linear renormalon of HL Sudakov && Twist-three soft factor

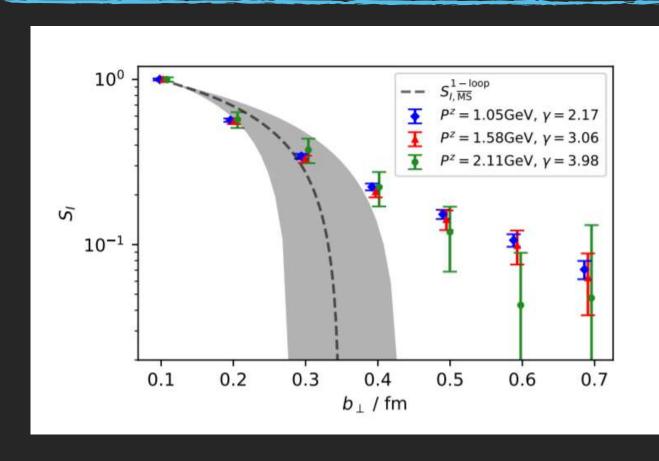
■ The HL Sudakov has a new feature: Linear IR-renormalon.

$$B(u) = R(u) + \frac{C_F}{2} \frac{G_0(u) - uG_0'(0) - G_0(0)}{u^2}, G_0(u) = \frac{1}{2} \frac{e^{\frac{5u}{3}}}{u - 1} \left(\frac{1}{\sin \pi u} - \frac{i}{\cos \pi u} \right) \left(\frac{\mu^2}{4p_7^2} \right)^u.$$

- The $u = \frac{1}{2}$ singularity: $B(u) \to -i \frac{\mu}{p_z} \frac{C_F e^{\frac{5}{6}}}{2\pi \left(u \frac{1}{2}\right)}$. Linear power correction.
- Must cancel with UV renormalon of NLP soft contributions.
- For LFWF factorization, $\psi^1(u, b_\perp) = \frac{c_F}{2p_z b_\perp} e^{\frac{5u}{3}} (\mu^2 b_\perp^2)^u \frac{(2u+1)\sin \pi u \Gamma(-2u)}{\pi}$.
- HL soft factor with single D_{\perp}^2 insertion on the light Wilson-lines.
- Linear rapidity divergence → UV renormalon.
- Similar cancellation in the threshold limit. NLP space-like jet function.

Summary and Outlook

- Double log evolution limit.
- 1. Universal light-like cusp anomalous dimension Γ_{cusp} .
- 2. TMD factorization && threshold limit of quark structure function.
- Heavy-light Sudakov universality class appears naturally in lattice parton distribution.
- l. Quasi-TMDPDF && LFWF amplitude && threshold limit of quark quasi-PDF.
- 2. Allows lattice extraction of TMD parton densities.
- 3. NNLO Heavy-light Sudakov form factor extracted from threshold limit.



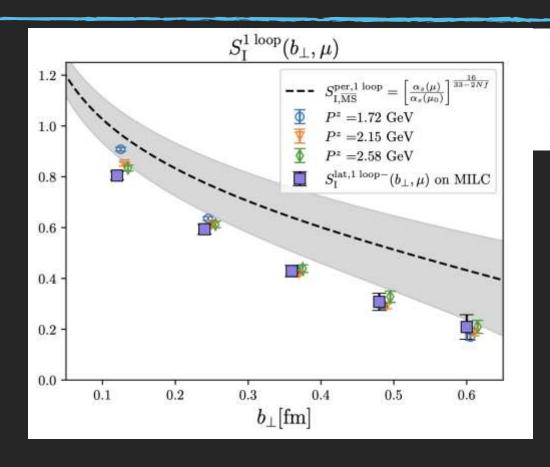
		$c_{sw} = 2.06686$	$\kappa_l^{\rm sea}$ 0.13675	$m_{\pi}^{\text{sea}}(\text{MeV})$ 333
		11.1	the same of the sa	
		864	0.13622	547

CLS A654

Preliminary results of S_r by LPC. Only tree-level matching.

S_r from lattice

Lattice Parton Collaboration, arXiv:2306.06488



Ensemble	a(fm)	$N_{\sigma}^3 \times N_{\tau}$	m_{π}^{sea}	m_{π}^{val}	Measure	
X650	0.098	$48^{3} \times 48$	$333~{ m MeV}$	$662~\mathrm{MeV}$	911×4	
A654	0.098	$24^{3} \times 48$	$333~{ m MeV}$	$662~{ m MeV}$	4923×20	
a12m130	0.121	403 - 04	$132~{ m MeV}$	310 MeV	1000×4	
	0.121	$48^{3} \times 64$		$220~\mathrm{MeV}$	1000×16	
a12m310	0.121	$24^{3} \times 64$	305 MeV	$670~{ m MeV}$	1053×8	

MILC al2m310

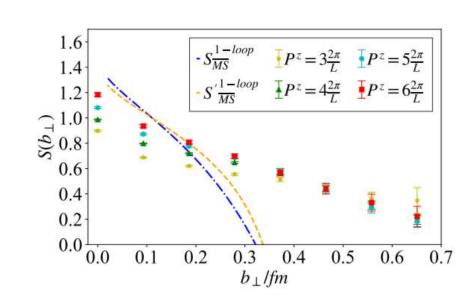


Figure 2. The lattice results of $S(b_{\perp})$ for various momenta, together with the one-loop perturbative result $S_{\overline{\rm MS}}^{1-{\rm loop}}$ and its variant $S_{\overline{\rm MS}}^{\prime 1-{\rm loop}}$ with α_s including up to 4 loops. The scale μ in Eq. (17) is set as μ = 2 GeV.

$\frac{(L/a)^3 \times T/a}{24^3 \times 48}$		a (fm) 0.093		$a\mu_{sea}$	m_{sea}^{π} 350		N_{conf}	
				0.0053			126	
$a\mu_{v0}$	m_{v0}^{π}	$a\mu_{v1}$	m_{v1}^{π}	$a\mu_{v2}$	m_{v2}^{π}	$a\mu_{v3}$	m_{v3}^{π}	
0.0053	350	0.013	545	0.018	640	0.03	827	

Table I. Parameters of the ensemble used in this work. We list the spatial and temporal extents, L/a and T/a, the lattice spacing a, the sea quark mass μ_{sea} , the pion mass m_{sea}^{π} , the number of configurations used, N_{conf} , and four valence quark masses μ_{vi} for i=0,1,2,3 together with the associated pion masses m_{vi}^{π} . All the pion masses are given in units of MeV.

ETMC configuration

Preliminary results of S_r . Only tree-level matching.