PROCES SCHNIĘCIA WARSTW MATERIAŁÓW POROWATYCH NASYCONYCH WODNYM ROZTWOREM **CdCI**₂

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK

I.M. Fijał-Kirejczyk, J.J. Milczarek, A. Budzianowski, <u>D. Rusinek</u>, J. Żołądek

Podstawowy opis procesu schnięcia w próbkach masywnych

Zmiana masy próbki podczas schnięcia

Zmiany temperatury wewnątrz próbki

H8 neutron radiography station

Collimators

Neutron Radiography facility main parameters

100 < L/D < 200 Cd ratio = 20 neutron flux density = 1.1×10^7 n cm⁻² s⁻¹ (at L/D = 150) ILL 2.9 × 10° n cm⁻² s⁻¹ at L/D = 100 Converter screen size: 250 x 250 mm Converters: gamma : Gd₂ O₂ S: Tb neutrons: ⁶Li:ZnS:Cu, AI, Au (green light) Camera: CCD ORCA-ER (Hammamatsu)

Linear resolution: 0.1 mm, time resolution: 1 s

Objects: medium size technical devices Processes: water migration in porous systems self-diffusion in water

Poglądowe przedstawienie obrazów neutronowych podczas procesu schnięcia

CRP "jednorodne" zmniejszanie zawartości wody

FRP powstaje front schnięcia

Próbki (złoże korundu w pojemniku duralowym)

Właściwości materiału użytego do badań

Nazwa producenta	Średnica ziaren [mm]
Elektrokorund F20	1 - 1.11
Elektrokorund F40	0.4 - 0.5
Elektrokorund F60	0.25 – 0.3
Elektrokorund F120	0.12 - 0.1
Elektrokorund F220	0.075 – 0.053

W badaniach użyto ziarnistego elektrokorundu o rozmiarach ziaren ok. 1 mm. Materiał do badań został wstępnie wypłukany w wodzie, a następnie wydzielony w drodze sedymentacji, w kolejnym etapie był suszony i przechowywany w temperaturze 50°C (wiele tygodni).

Przykładowe radiogramy neutronowe dla próbki korundu o rozmiarach ziaren 1 – 1.11 mm (F20) nasyconej czystą wodą.

Poniżej obrazów podano czas od początku procesu schnięcia

CRP (Constant Rate Period)

t

FRP (Falling Rate Period)

Radiogramy dla korundu o rozmiarach ziaren 1 – 1.11 mm (F20) nasyconych roztworem wodnym NaCl o stężeniu 1%

22787 s

96980 s

Radiogramy dla korundu o rozmiarach ziaren 1 – 1.11 mm (F20) nasyconych roztworem wodnym NaCl o stężeniu 12%

11190 s

Radiogramy dla korundu o rozmiarach ziaren 1 – 1.11 mm (F20) w roztworze CdCl₂ o stężeniu 3.7% w pojemniku kwarcowym

Radiogramy dla korundu o rozmiarach ziaren 1 – 1.11 mm (F20) w roztworze CdCl₂ o stężeniu 17.3% w pojemniku aluminiowym

2490 s

5570 s

43010 s

Badanie schnięcia korundu F20 nasyconego wodnymi roztworami wodnymi soli NaCl i CdCl₂ w pojemnikach aluminiowych

Obrazy próbek po zakończonym procesie schnięcia widoczna eflorescencja obydwu soli

Radiogramy dla korundu o rozmiarach ziaren 1 – 1.11 mm (F20) w roztworze CdCl₂ o stężeniu 17.3% w pojemniku kwarcowym

Wewnętrzna strona ściany frontowej pojemnika AI. po skończonym procesie widoczne wytrącenia Cd

Obraz neutronowy

Pojemnik kwarcowy wypełniony elektrokorundem o gradacji F20

Identyfikacja fazowa XRD

Dyfraktogram dla wewnętrznej strony kontenera zarejestrowano na dyfraktometrze proszkowym Bruker Discovery D8 z lampą rentgenowską z anodą miedziową w konfiguracji wiązki równoległej przy użyciu detektora VANTEC.

a) Dyfraktogram zarejestrowany dla wewnętrznej strony kontenera

- b) krzywa tła
- c) glin
- d) kadm

e) Różnice w dyfraktogramie wynikające z równania e=a-(b+c+d).

Niebieskie trójkąty powyżej linii różnicowej wskazują miejsca, gdzie występują dodatkowa niezidentyfikowane dyfrakcja od faz krystalicznych obecnych na kontenerze. Średnia jasność B i odchylenie standardowe jasności radiogramów dla suszenia korundu F20 w roztworach soli CdCl₂ i NaCl o różnym stężeniu w pojemniku Al

Średnia gęstość optyczna D i odchylenie standardowe jasności radiogramów dla suszenia korundu F20 w 3,6% roztworze soli CdCl₂ w różnych pojemnikach

Średnia jasność B i odchylenie standardowe jasności radiogramów dla suszenia korundu F20 w 17,3% roztworze soli CdCl₂ w różnych pojemnikach

Porównanie zależności od czasu STD określonego dla różnych głębokości pojemnika z korundem F20 nasyconym czystą wodą

Ewolucja czasowa odchylenia standardowego jasności radiogramów w trakcie suszenia korundu F20 w różnych roztworach soli CdCl₂ w różnych pojemnikach

Rozkład jasności B wzdłuż osi pionowej radiogramów dla suszenia korundu F20 nasyconego roztworami soli CdCl₂ w pojemnikach kwarcowych

Wnioski

- Zależność średniej jasności od czasu odzwierciedla zmiany średniej zawartości wody w materiale i koresponduje ze zmianami masy wody zawartej w próbce.
- Zmiany standardowego odchylenia statystycznego STD jasności obrazu próbki w funkcji czasu zawierają zwykle dwa maksima: pierwsze wyraźne - związane z schnięciem materiału wewnątrz drugie (późniejsze i słabsze) - związane z ruchem frontu schnięcia.
- Obserwacja zależności i STD względem czasu na różnych głębokościach w próbce pozwala na interpretację procesów transportu masy w trakcie schnięcia materiału.
- Zaobserwowana zarówno eflorescencję jak i subflorescencję CdCl₂ oraz wydzielanie metalicznego kadmu na powierzchni pojemnika aluminiowego.