

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Badanie mechanizmów plastyczności w steksturowanym stopie magnezu AZ31 przy użyciu dyfrakcji neutronowej

Plastic deformation study in textured AZ31 magnesium alloy using neutron diffraction

P. Kot¹, A. Baczmański², A. Ludwik², M. Wroński², J. Pilch³, G. Farkas³, S. Wroński²

¹CoE NOMATEN, National Institute for Nuclear Research, A. Sołtana 7, 05-400 Otwock, Poland
²AGH University of Science and Technology, WFiIS, al. Mickiewicza 30, 30-059 Kraków, Poland
³Nuclear Physical Institute, ASCR, Hlavni 130, 25068 Řež, Czech Republic

Rozpraszanie neutronów i badania komplementarne w badaniach materii , 09-13.06.2024

Agenda

- **1.** Aim of the study
- 2. Material characterisation
- 3. Crystallite group method
- 4. Stress localisation
- 5. Direct measurement of CRSS
- 6. Cycling load & detwinning

Aims of the study

Aims of the study

Grain stresses – textured Mg alloy

Material characterization Mg alloy (AZ31) – hot rolled

Orientation map from EBSD

Mg alloy (AZ31) – anisotropy

 $|\mathbf{E}|$

Crystallite Group Method

Crystallite group method

Monotonic load experiments for Mg alloy

Experiment at HK9, NPI, Řež/Prague tensile in RD (RDT)

Monochromatic wavelength: $\lambda = 1.158$ Å

$$2d_{hkl}\sin\theta = n\lambda$$

Initial state

RDT $\varepsilon = 2\%$

TOF diffraction in JINR Dubna, Russia (NDC and RDC)

TOF diffraction in JINR Dubna, Russia (NDC and RDC)

L7

Plastic deformation mechanisms in Mg alloy

Resolved shear stress in Mg AZ31 alloy

 $\tau = \vec{\mathrm{n}} \, \pmb{\sigma} \, \vec{m}$

$\varphi_1 = 90^{\circ}$) Basal **Prismatic Pyramidal** <a> 0.50 0.42 **RSS in Euler space** Orientation 0.33 **Distribution NDC** Function Pyramidal Pyramidal Tensile 0.25 $\langle c+a \rangle v1$ <c+a> v2 twinning σ 0.17 0.08 0.00 ★ A (0°, 0°, 0°) ◆C (90°, 30°, 90°) **+** F (90°, 62°, 0°) **X** G' (90°, 47°, 0°) 🖕 B (90°, 0°, 0°) σ ● D (90°, 32°, 0°) G (90°, 43°, 0°) ● T (90°, 86.3°, 0°) ND 30° 32° ΤD 62° RD 86.3° Orient. A Orient. B Orient. C Orient. D Orient. F Orient. G Orient. G' Orient. T

Resolved shear stress in Mg AZ31 alloy

Basal confirmation (Mg30)

CRSS uncertainty

Uncertainty based on points uncertainty

Uncertainty based on linear regression

CRSS from experiments comparison

	Miller-Bravais indices	τ ₀ (MPa)		
Slip systems		Rez RDT	Dubna NDC, RDC	Rez NDC, RDC, Mg30
Basal <a>	$\{0001\}\langle 11\overline{2}0\rangle$	35	28.0 (3.1)	24.0(3.0)
Prismatic <a>	{11 <u>00</u> }(11 <u>2</u> 0)	>62	67.7 (7.9)	
Pyramidal <a>	{1101}<1120>	>62	59.7 (6.9)	
Pyramidal <c+a> v1</c+a>	<u>{1011}/1173</u>		104.4 (5.6)	117(10)
Pyramidal <c+a> v1 (in twin)</c+a>	(1011)(1123)		130 (108 – 145)	120.5(8.2)
Pyramidal <c+a> v2</c+a>	{1122} 1123		116.6 (3.5)	130(12)
Pyramidal <c+a> v2 (In twin)</c+a>			144 (120 – 161)	134.3(9.1)
Twinning	$\{10\overline{1}2\}\langle\overline{1}011\rangle$		49.1 (2.5)	45.5(1.6)

Cycling load twinning and detwinning

d, Å

d, Å

Cycling load at HK9, NPI, Řež/Prague

Twinning and detwinning during cycle loading

Twinning during compression phase

Detwinning during tensile phase

Conclusions

- 1. Diffraction methods for deformation study was developed
- 2. For textured Mg AZ31 alloy stresses on different crystallite groups were determined directly from experiment
- 3. Elastic-plastic deformation was described at grain scale in textured magnesium
- 4. The CRSS values are unabiguously determined directly from experiment with uncertainties (model assumptions not used)
- 5. For the first time detwinning CRSS value was measured using neutron diffraction

Acknowledgements

This work was partially financed by grant from the National Science Centre, Poland (NCN) No. UMO-2017/25/B/ST8/00134 and UMO-2021/41/N/ST5/00394 .

P. Kot were personally supported in part by the European Union Horizon 2020 research and innovation program under Grant Agreement No. 857470 and from the European Regional Development Fund via Foundation for Polish Science International Research Agenda PLUS program Grant No. MAB PLUS/2018/8.

The neutron diffraction experiments used in this work were performed during the period 2017-2019 at JINR in Dubna (Russia) and the purchase of samples/reagents/ancillary equipment was partly financed by the joint JINR/AGH projects nr PWB/254_24/2018 and PWB/129-23/2019.

Thank you for your attention!

Backup slides

Stress/strain measurement using diffraction

In situ diffraction measurement under applied loads

Maximum RSS and CRSS - model confirmation

Model vs ex-situ compression

 $\eta = 30^{\circ}$

 $\eta = 45^{\circ}$

Ex-situ compression tests were carried out for samples cut at different angles between ND and cylinder axis. The results were compared with model prediction. Two model assumptions were verified – continuous and trheshold.

 $\eta = 60^{\circ}$

 $\eta = 90^{\circ}$

0.00

B. Clausen et al. / Acta Materialia 56 (2008) 2456-2468

Engineering Strain [%]

Fig. 3. Schematic of the in situ compression set-up of the SMARTS instrument.

Previous model

39/36

Comparison with literature

Model + diffraction

Direct method

H. Wang et al./International Journal of Solids and Structures 47 (2010) 2905–2917

Table 1

List of material constants for various self-consistent models.

Model	Mode	τ_0
Affine	Basal	9
	Prismatic	79
	Pyramidal	100
	Tensile twin	47
Secant	Basal	13
	Prismatic	73
	Pyramidal	110
	Tensile twin	31
m^{eff} ($m^{eff} = 0.1$)	Basal	17
	Prismatic	77
	Pyramidal	148
	Tensile twin	33
Tangent	Basal	21
	Prismatic	90
	Pyramidal	145
	Tensile twin	38

Slip system	CRSS from experiment
	τ_0 (MPa)
Basal	28.0 (3.1)
Prismatic <a>	67.7 (7.9)
Pyramidal <a>	59.7 (6.9)
Pyramidal <a+c> ver. 1</a+c>	104.4 (5.6)
Pyramidal <a+c> ver. 2</a+c>	116.6 (3.5)
First order tensile twin	49.1 (2.5)