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▪ More matter: gravitational effect on dynamics of visible matter
▪ Present on very different length scales

The phenomenon of Dark Matter

CMB anisotropies

Contributions      to the energy 
density of the Universe today:

[Planck 2020]

⌦i

⌦DMh2 = 0.12± 0.001
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point

⇥
h
2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Particle physics
+cosmology:
Extrapolate to early 
hot Universe
⇒ Boltzmann Eqs.

 



Boltzmann equations for particle densities

1

E� (�t �Hp �p) f�(p, t) = C [f�]

Relativistic Liouville operator for
homogeneous, isotropic Universe Collision operator

Cosmology Particle Physics

[Zel’dovich, Okun, Pikel’ner1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; 
Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

H ⇠ �ann
<
<
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
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even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

�dec � H
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.
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out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
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would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
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responsible for wiping out the dependence on the initial
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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are considered. The shaded areas highlight the dependence
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curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

�dec = 0

/ n� ⇠ e�m�/T

��� � �� ��� ����
��-��

��-��

��-��

��-�

��-�

x = m�/T

time

(⌦h2)Planck ' 0.12

Y
=

n
/s

Forbid decay 
e.g. via Z2-symmetry

Jan Heisig                                                                                                                                                                    5



Boltzmann equations for particle densities
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WIMP paradigm attractive

▪ Works with simple/natural models ("WIMP miracle")

▪ Independent of largely unconstrained/unknown   
   physics of the very early universe (inflation/reheating)  

▪ Naturally provides perfectly cold dark matter (CDM)

▪ Testable at indirect detection, direct detection and   
   collider experiments
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WIMP Dark Matter: searches
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serving zero events, leading to a data-driven constraint
of 0.0+0.2 applied to the search. This rate agrees with
simulations based on detector material radioassay [62].

Finally, the expected distribution of accidentals is de-
termined by generating composite single-scatter event
waveforms from isolated S1 and S2 pulses and applying
the WIMP analysis selections. The selection e�ciency
is then applied to UDT single-scatter-like events to con-
strain the accidentals rate.

FIG. 5. The 90% confidence limit (black line) for the spin-
independent WIMP cross section vs. WIMP mass. The
green and yellow bands are the 1� and 2� sensitivity bands.
The dotted line shows the median of the sensitivity projec-
tion. Also shown are the PandaX-4T [26], XENON1T [25],
LUX [28], and DEAP-3600 [74] limits.

Statistical inference of WIMP scattering cross section
and mass is performed with an extended unbinned pro-
file likelihood statistic in the log10S2c-S1c observable
space, with a two-sided construction of the 90% confi-
dence bounds [54]. Background and signal component
shapes are modeled in the observable space using the
geant4-based package baccarat [75, 76] and a custom
simulation of the LZ detector response using the tuned
nest model. The background component uncertainties
are included as constraint terms in a combined fit of the
background model to the data, the result of which is also
shown in Table I.

Above the smallest tested WIMP mass of 9GeV/c2,
the best-fit number of WIMP events is zero, and the data
are thus consistent with the background-only hypothesis.
Figure 5 shows the 90% confidence level upper limit on
the spin-independent WIMP-nucleon cross section �SI as
a function of mass. The minimum of the limit curve is at
m� = 30GeV/c2 with a limit of �SI = 5.9⇥ 10�48 cm2.
For WIMP masses between 19GeV/c2 and 26GeV/c2,
background fluctuations produce a limit which is below
a critical discovery power threshold, ⇡crit = 0.32, and
for these masses the reported limit is set to the limit
equivalent to ⇡crit [54]. The background model and data

FIG. 6. Reconstructed energy spectrum of the best fit model.
Data points are shown in black. The blue line shows total
summed background. The darker blue band shows the model
uncertainty and the lighter blue band the combined model and
statistical uncertainty. Background components are shown in
colors as given in the legend. Background components from
8B solar neutrinos and accidentals are included in the fit but
are too small to be visible in the plot.

as a function of reconstructed energy are shown in Fig. 6,
and the data agree with the background-only model with
a p-value of 0.96. LZ also reports the most sensitive
limit on spin-dependent neutron scattering, detailed in
the Appendix. A data release for this result is in the
Supplemental Materials [77].
The LZ experiment has achieved the highest sensitivity

to spin-independent WIMP-nucleon scattering for masses
greater than 9GeV/c2 due to the successful operation
of an integrated detector system containing the largest
dual-phase xenon TPC to date. LZ is continuing opera-
tions at SURF and will undertake further detector and
analysis optimization to search for a broad range of rare-
event physics searches, including WIMPs, neutrinoless
double-beta decay, solar neutrinos, and solar axions [78–
80] over an estimated 1000 day exposure.
The research supporting this work took place in part

at SURF in Lead, South Dakota. Funding for this work
is supported by the U.S. Department of Energy, O�ce of
Science, O�ce of High Energy Physics under Contract
Numbers DE-AC02-05CH11231, DE-SC0020216, DE-
SC0012704, DE-SC0010010, DE-AC02-07CH11359,
DE-SC0012161, DE-SC0015910, DE-SC0014223,
DE-SC0010813, DE-SC0009999, DE-NA0003180,
DE-SC0011702, DE-SC0010072, DE-SC0015708, DE-
SC0006605, DE-SC0008475, DE-SC0019193, DE-
FG02-10ER46709, UW PRJ82AJ, DE-SC0013542,
DE-AC02-76SF00515, DE-SC0018982, DE-SC0019066,
DE-SC0015535, DE-SC0019319, DE-AC52-07NA27344,
& DOE-SC0012447. This research was also sup-
ported by U.S. National Science Foundation (NSF);
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▪ Freeze-out in secluded sector
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▪ Variety of scenarios in
   t-channel mediator models
   (‘charged parent particle model’)
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SM

X2

X1

▪ Large hierarchy of couplings: 

▪ Interesting for the subject for two reasons:
   (i)  ‘strong’ coupling: significant bound state effects
   (ii) very weak (‘feeble’) coupling: suppresses scattering and decay rates
        ⇒ typically prolonged freeze-out process

�strong � �feeble

�strong

�feeble
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▪ Large hierarchy of couplings: 

▪ Interesting for the subject for two reasons:
   (i)  ‘strong’ coupling: significant bound state effects
   (ii) very weak (‘feeble’) coupling: suppresses scattering and decay rates
        ⇒ typically prolonged freeze-out process
        ⇒ bound state at late times (low T ): excitations highly relevant
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Effects of (excited) bound state



Non-relativistic effects
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Figure 1a. The amplitude for the radiative capture consists of the (non-perturbative) initial and
final state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.
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Figure 1b. The leading order diagrams contributing to C⌫ . The external-momentum, colour-index
and space-time-index assignments are the same in all three diagrams.
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We are interested only in the spatial components of C⌫ , ⌫ “ 1, 2, 3,

Ca
ii1,jj1 “ pCmedqaii1,jj1 ` pC1qaii1,jj1 ` pC2qaii1,jj1 . (2.22)
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one obtains

dYB
dx

=
1

3Hs

ds
dx
⇥
�eff

ion
�
YB � Y eq

B y2
�
+ �eff

dec (YB � Y eq

B )
⇤
,

(29)
with effective ionization and decay rates

�eff
break/dec =

P
i �

i
break/dec Y

eq

B,i

Y eq

B
(30)

Setting again the left-hand side of the Boltzmann equa-
tion (29) to zero, and inserting the resulting algebraic
expression together with eq. (28) into eq. (10) yields

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵
sum

�eff
dec

�eff
ion + �eff

dec
, (31)

where
⌦
�BSFv

↵
sum =

P
i

⌦
�BSF,iv

↵
. The result is similar

in form to the case of a single bound state, eq. (15), but
with the ionization and decay rates replaced by a ther-
mal average over all bound states, and the recombination
cross section by the sum.

It turns out that obtaining this result directly from the
general expression eq. (23) is tedious. The reason is that
naively neglecting the ionization and decay rates in the
total width would lead to a singular matrix Mij . How-
ever, by carefully expanding the abundances around the
chemical equilibrium solution yi =const., and treating
�i

ion/�
i and �i

dec/�
i as small, one ultimately arrives at

the same expression eq. (31).
We also note that using the Milne relation, eq. (11),

for each bound state, one finds

�eff
ion =

s

4

Y eq 2

q̃

Y eq

B

⌦
�BSFv

↵
sum , (32)

i.e. the summed recombination cross section and the ef-
fective ionization rate satisfy a generalized Milne rela-
tion. This implies that, in analogy to the case of a single
bound state, within the regime of ionization equilibrium
(�eff

ion � �eff
dec), the effective cross section becomes in-

dependent of the recombination cross section, and only
depends on the effective decay rate. In the opposite limit
�eff

ion ⌧ �eff
dec of almost instantaneous decay, the decay

rate drops out, and the effective cross section depends
only on

⌦
�BSFv

↵
sum.

3. Ionization equilibrium

The limit of ionization equilibrium is somewhat orthog-
onal to the two limiting cases considered above. When
ionization and recombination processes are assumed to
be efficient enough to establish ionization equilibrium,
the effective cross section approaches the universal form

⌦
�q̃q̃†v

↵
eff !

⌦
�q̃q̃†v

↵
+
X

i

gBi

g2q̃

 
2⇡mBi

Tm2

q̃

!3/2

eEBi/T �i
dec ,

(33)

which is a straightforward generalization of eq. (16) and
independent of ionization rates �i

ion as well as transition
rates �i!j

trans. The reason is that efficient ionization and
recombination processes establish chemical equilibrium
with the unbound q̃ particles in that case for each bound
state. This means, in turn, that they are in chemical
equilibrium among each other, such that the transition
processes play no role for their relative abundances in
that limit. This result agrees with the finding in [35],
where a set of bound states in ionization equilibrium was
considered.

Indeed, it is easy to see that eq. (33) follows from both
the effective cross section in either the limiting case of no
transitions or the case of efficient transitions when assum-
ing in addition that �i

ion � �i
dec. Moreover, the fact that

eq. (33) is even valid independently of the size of tran-
sition rates can be seen by noticing that the derivation
presented in Sec. III B 2 relies only on the assumption of
chemical equilibrium among the bound states, which is
satisfied in ionization equilibrium.

Therefore, as long as ionization equilibrium holds, the
effective cross section is only sensitive to the bound state
decay rates, independently of the size of transition and
ionization rates.

In a realistic setup, the limiting assumptions made
above may be too restrictive, and at best hold only for a
subset of bound states, and a subset of the corresponding
ionization, decay or transition processes. In this case, the
effective cross section can be computed using the general
result, eq. (23).

IV. RATES

While the discussion in the previous section was
generic, we focus on the set of bound states and ion-
ization, decay and transition rates that are relevant for
the scalar mediator q̃ that carries hypercharge and trans-
forms under the fundamental representation of SU(Nc)
with Nc = 3 in the following.

A heavy (mq̃ � ⇤QCD), non-relativistic q̃q̃† pair can
be described by two wavefunctions  [R], one for the color
octet ([8]) and one for the color singlet ([1]) configura-
tion. They obey a Schrödinger equation with kinetic en-
ergy p2

rel/(2µ), where

µ = mq̃/2 , (34)

is the reduced mass, and potential in Coulomb approxi-
mation [26]

V[R](r) = �

↵eff
[R]

r
, (35)

with effective coupling strength

↵eff
[R]

= ↵s
C [3]

2
+ C [3]

2
� C [R]

2

2
. (36)
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▪ Non-abelian gauge theory:
   e.g. X in 3 of SU(3):                          

X

X
2. Bound state formation:

X1

X2

¨ ¨ ¨ ¨ ¨ ¨ B

g

C⌫

Figure 1a. The amplitude for the radiative capture consists of the (non-perturbative) initial and
final state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.

i

j

⌘1K ` q

⌘2K ´ q

a, ⌫
b, ⇢

c, µ

Pg

⌘1P ` p

⌘2P ´ p

i1

j1

` `

Figure 1b. The leading order diagrams contributing to C⌫ . The external-momentum, colour-index
and space-time-index assignments are the same in all three diagrams.

Emission from the mediator

ipC⌫
medqaii1,jj1 “

“ S1p⌘1P ` pq
”
´igspT b

1 qi1i p⌘1K ` ⌘1P ` q ` pq⇢
ı
S1p⌘1K ` qq ´i

p⌘1K ` q ´ ⌘1P ´ pq2

ˆ S2p⌘2P ´ pq
“
´igs pT c

2 qj1j p⌘2K ` ⌘2P ´ q ´ pqµ
‰
S2p⌘2K ´ qq ´i

p⌘2K ´ q ´ ⌘2P ` pq2
ˆ p´gBSF

s fabcq tg⇢µrp⌘1K ` q ´ ⌘1P ´ pq ´ p⌘2K ´ q ´ ⌘2P ` pqs⌫

`g⌫⇢r´Pg ´ p⌘1K ` q ´ ⌘1P ´ pqsµ ` gµ⌫rp⌘2K ´ q ´ ⌘2P ` pq ` Pgs⇢u , (2.21a)

Emission from X1

ipC⌫
1 qaii1,jj1 “ �j1j S2p⌘2K ´ qq ˆ S1p⌘1P ` pqS1p⌘1K ` qq

ˆ
“
´igBSF

s pT a
1 qi1i p⌘1K ` ⌘1P ` q ` pq⌫ p2⇡q4�4p⌘1K ` q ´ ⌘1P ´ p ´ Pgq

‰
,

(2.21b)

Emission from X2

ipC⌫
2 qaii1,jj1 “ �i1i S1p⌘1K ` qq ˆ S2p⌘2P ´ pqS2p⌘2K ´ qq

ˆ
“
´igBSF

s pT a
2 qj1j p⌘2K ` ⌘2P ´ q ´ pq⌫ p2⇡q4�4p⌘2K ´ q ´ ⌘2P ` p ´ Pgq

‰
.

(2.21c)

We are interested only in the spatial components of C⌫ , ⌫ “ 1, 2, 3,

Ca
ii1,jj1 “ pCmedqaii1,jj1 ` pC1qaii1,jj1 ` pC2qaii1,jj1 . (2.22)

– 8 –

▪ Force carrier = vector (gauge field): 
   bound state formation XS ~ dipole transition:

g r ·E
[(Color-)electric 
 dipol operator
 (in pNRQCD),
 see e.g. Yao+ 2019]

(�v)n` / |h n`| r | pi|2

▪ Force carrier massless (unbroken gauge theory): 
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one obtains

dYB
dx

=
1

3Hs

ds
dx
⇥
�eff

ion
�
YB � Y eq

B y2
�
+ �eff

dec (YB � Y eq

B )
⇤
,

(29)
with effective ionization and decay rates

�eff
break/dec =

P
i �

i
break/dec Y

eq

B,i

Y eq

B
(30)

Setting again the left-hand side of the Boltzmann equa-
tion (29) to zero, and inserting the resulting algebraic
expression together with eq. (28) into eq. (10) yields

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵
sum

�eff
dec

�eff
ion + �eff

dec
, (31)

where
⌦
�BSFv

↵
sum =

P
i

⌦
�BSF,iv

↵
. The result is similar

in form to the case of a single bound state, eq. (15), but
with the ionization and decay rates replaced by a ther-
mal average over all bound states, and the recombination
cross section by the sum.

It turns out that obtaining this result directly from the
general expression eq. (23) is tedious. The reason is that
naively neglecting the ionization and decay rates in the
total width would lead to a singular matrix Mij . How-
ever, by carefully expanding the abundances around the
chemical equilibrium solution yi =const., and treating
�i

ion/�
i and �i

dec/�
i as small, one ultimately arrives at

the same expression eq. (31).
We also note that using the Milne relation, eq. (11),

for each bound state, one finds

�eff
ion =

s

4

Y eq 2

q̃

Y eq

B

⌦
�BSFv

↵
sum , (32)

i.e. the summed recombination cross section and the ef-
fective ionization rate satisfy a generalized Milne rela-
tion. This implies that, in analogy to the case of a single
bound state, within the regime of ionization equilibrium
(�eff

ion � �eff
dec), the effective cross section becomes in-

dependent of the recombination cross section, and only
depends on the effective decay rate. In the opposite limit
�eff

ion ⌧ �eff
dec of almost instantaneous decay, the decay

rate drops out, and the effective cross section depends
only on

⌦
�BSFv

↵
sum.

3. Ionization equilibrium

The limit of ionization equilibrium is somewhat orthog-
onal to the two limiting cases considered above. When
ionization and recombination processes are assumed to
be efficient enough to establish ionization equilibrium,
the effective cross section approaches the universal form

⌦
�q̃q̃†v

↵
eff !

⌦
�q̃q̃†v

↵
+
X

i

gBi

g2q̃

 
2⇡mBi

Tm2

q̃

!3/2

eEBi/T �i
dec ,

(33)

which is a straightforward generalization of eq. (16) and
independent of ionization rates �i

ion as well as transition
rates �i!j

trans. The reason is that efficient ionization and
recombination processes establish chemical equilibrium
with the unbound q̃ particles in that case for each bound
state. This means, in turn, that they are in chemical
equilibrium among each other, such that the transition
processes play no role for their relative abundances in
that limit. This result agrees with the finding in [35],
where a set of bound states in ionization equilibrium was
considered.

Indeed, it is easy to see that eq. (33) follows from both
the effective cross section in either the limiting case of no
transitions or the case of efficient transitions when assum-
ing in addition that �i

ion � �i
dec. Moreover, the fact that

eq. (33) is even valid independently of the size of tran-
sition rates can be seen by noticing that the derivation
presented in Sec. III B 2 relies only on the assumption of
chemical equilibrium among the bound states, which is
satisfied in ionization equilibrium.

Therefore, as long as ionization equilibrium holds, the
effective cross section is only sensitive to the bound state
decay rates, independently of the size of transition and
ionization rates.

In a realistic setup, the limiting assumptions made
above may be too restrictive, and at best hold only for a
subset of bound states, and a subset of the corresponding
ionization, decay or transition processes. In this case, the
effective cross section can be computed using the general
result, eq. (23).

IV. RATES

While the discussion in the previous section was
generic, we focus on the set of bound states and ion-
ization, decay and transition rates that are relevant for
the scalar mediator q̃ that carries hypercharge and trans-
forms under the fundamental representation of SU(Nc)
with Nc = 3 in the following.

A heavy (mq̃ � ⇤QCD), non-relativistic q̃q̃† pair can
be described by two wavefunctions  [R], one for the color
octet ([8]) and one for the color singlet ([1]) configura-
tion. They obey a Schrödinger equation with kinetic en-
ergy p2

rel/(2µ), where

µ = mq̃/2 , (34)

is the reduced mass, and potential in Coulomb approxi-
mation [26]

V[R](r) = �

↵eff
[R]

r
, (35)

with effective coupling strength

↵eff
[R]

= ↵s
C [3]

2
+ C [3]

2
� C [R]

2

2
. (36)

Coulomb limit: 

dominant contribution arises from the processes that annihilate XX:, with total cross-

section �XX: , such that

x�e↵ vrely “ 2Y eq
X Y eq

X: x�XX: vrely
Ỹ 2
eq

“ x�XX: vrely
˜

2g2Xp1 ` �q3 e´2x �

“
g� ` 2gXp1 ` �q3{2 e´x �

‰2

¸
. (3.6)

Both the direct annihilation and the BSF processes contribute to �XX: , as we discuss in

the following.

In this work, we shall neglect thermal e↵ects. The thermal bath may a↵ect the DM

freeze-out in a variety of ways, including, on one hand, screening of the long-range interac-

tions and, on the other hand, frequent (non-radiative) scattering processes that precipitate

DM depletion via BSF [49]. In the context of DM coannihilation with coloured partners,

the latter have been considered in Ref. [51]. The inclusion of thermal corrections for the

radiative BSF processes considered here requires a comprehensive study that we leave for

future work.

3.2 Colour states and the running of the coupling

The X ´ X: colour interaction may be decomposed as

3 b 3̄ “ 1 ‘ 8 . (3.7)

In each irreducible representation R̂, the gluon exchange gives rise to the Coulomb potential

of eq. (2.13) with the coupling ↵g given by eq. (2.14). The quadratic Casimir invariants

for the SUp3q representations of interest are C2p1q “ 0, C2p3q “ C2p3̄q “ 4{3, C2p8q “ 3,

therefore

↵g ” ↵s ˆ
#

4{3, R̂ “ 1,

´1{6, R̂ “ 8.
(3.8)

As discussed in section 2.2, the strong coupling ↵s depends on the momentum transfer

Q. In table 2, we list the average Q for the various vertices appearing in the annihilation

and BSF processes, in this model. For the bound states, the momentum transfer depends

itself on the strong coupling, Q “ Qp↵sq. In this case, we determine ↵s by solving the

numerically the equation

↵spQp↵̃qq “ ↵̃ , (3.9)

for ã. We discuss further the e↵ect of the ↵s running in the following.

3.3 Direct annihilation

XX: pairs annihilate dominantly into gluons (cf. fig. 2), with cross-section [68]

�XX:Ñggvrel “ 14

27

⇡p↵ann
s q2

m2
X

ˆ
ˆ
2

7
S0,r1s ` 5

7
S0,r8s

˙
, (3.10)

where S0,r1s and S0,r8s are the s-wave Sommerfeld factors of the colour-singlet and colour-

octet states,

S0,r1s ” S0

ˆ
4↵S

s

3vrel

˙
and S0,r8s ” S0

ˆ
´ ↵S

s

6vrel

˙
. (3.11)
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one obtains

dYB
dx

=
1

3Hs

ds
dx
⇥
�eff

ion
�
YB � Y eq

B y2
�
+ �eff

dec (YB � Y eq

B )
⇤
,

(29)
with effective ionization and decay rates

�eff
break/dec =

P
i �

i
break/dec Y

eq

B,i

Y eq

B
(30)

Setting again the left-hand side of the Boltzmann equa-
tion (29) to zero, and inserting the resulting algebraic
expression together with eq. (28) into eq. (10) yields

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵
sum

�eff
dec

�eff
ion + �eff

dec
, (31)

where
⌦
�BSFv

↵
sum =

P
i

⌦
�BSF,iv

↵
. The result is similar

in form to the case of a single bound state, eq. (15), but
with the ionization and decay rates replaced by a ther-
mal average over all bound states, and the recombination
cross section by the sum.

It turns out that obtaining this result directly from the
general expression eq. (23) is tedious. The reason is that
naively neglecting the ionization and decay rates in the
total width would lead to a singular matrix Mij . How-
ever, by carefully expanding the abundances around the
chemical equilibrium solution yi =const., and treating
�i

ion/�
i and �i

dec/�
i as small, one ultimately arrives at

the same expression eq. (31).
We also note that using the Milne relation, eq. (11),

for each bound state, one finds

�eff
ion =

s

4

Y eq 2

q̃

Y eq

B

⌦
�BSFv

↵
sum , (32)

i.e. the summed recombination cross section and the ef-
fective ionization rate satisfy a generalized Milne rela-
tion. This implies that, in analogy to the case of a single
bound state, within the regime of ionization equilibrium
(�eff

ion � �eff
dec), the effective cross section becomes in-

dependent of the recombination cross section, and only
depends on the effective decay rate. In the opposite limit
�eff

ion ⌧ �eff
dec of almost instantaneous decay, the decay

rate drops out, and the effective cross section depends
only on

⌦
�BSFv

↵
sum.

3. Ionization equilibrium

The limit of ionization equilibrium is somewhat orthog-
onal to the two limiting cases considered above. When
ionization and recombination processes are assumed to
be efficient enough to establish ionization equilibrium,
the effective cross section approaches the universal form

⌦
�q̃q̃†v

↵
eff !

⌦
�q̃q̃†v

↵
+
X

i

gBi

g2q̃

 
2⇡mBi

Tm2

q̃

!3/2

eEBi/T �i
dec ,

(33)

which is a straightforward generalization of eq. (16) and
independent of ionization rates �i

ion as well as transition
rates �i!j

trans. The reason is that efficient ionization and
recombination processes establish chemical equilibrium
with the unbound q̃ particles in that case for each bound
state. This means, in turn, that they are in chemical
equilibrium among each other, such that the transition
processes play no role for their relative abundances in
that limit. This result agrees with the finding in [35],
where a set of bound states in ionization equilibrium was
considered.

Indeed, it is easy to see that eq. (33) follows from both
the effective cross section in either the limiting case of no
transitions or the case of efficient transitions when assum-
ing in addition that �i

ion � �i
dec. Moreover, the fact that

eq. (33) is even valid independently of the size of tran-
sition rates can be seen by noticing that the derivation
presented in Sec. III B 2 relies only on the assumption of
chemical equilibrium among the bound states, which is
satisfied in ionization equilibrium.

Therefore, as long as ionization equilibrium holds, the
effective cross section is only sensitive to the bound state
decay rates, independently of the size of transition and
ionization rates.

In a realistic setup, the limiting assumptions made
above may be too restrictive, and at best hold only for a
subset of bound states, and a subset of the corresponding
ionization, decay or transition processes. In this case, the
effective cross section can be computed using the general
result, eq. (23).

IV. RATES

While the discussion in the previous section was
generic, we focus on the set of bound states and ion-
ization, decay and transition rates that are relevant for
the scalar mediator q̃ that carries hypercharge and trans-
forms under the fundamental representation of SU(Nc)
with Nc = 3 in the following.

A heavy (mq̃ � ⇤QCD), non-relativistic q̃q̃† pair can
be described by two wavefunctions  [R], one for the color
octet ([8]) and one for the color singlet ([1]) configura-
tion. They obey a Schrödinger equation with kinetic en-
ergy p2

rel/(2µ), where

µ = mq̃/2 , (34)

is the reduced mass, and potential in Coulomb approxi-
mation [26]

V[R](r) = �

↵eff
[R]

r
, (35)

with effective coupling strength

↵eff
[R]

= ↵s
C [3]

2
+ C [3]

2
� C [R]

2

2
. (36)
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in form to the case of a single bound state, eq. (15), but
with the ionization and decay rates replaced by a ther-
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cross section by the sum.
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i.e. the summed recombination cross section and the ef-
fective ionization rate satisfy a generalized Milne rela-
tion. This implies that, in analogy to the case of a single
bound state, within the regime of ionization equilibrium
(�eff
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dec), the effective cross section becomes in-

dependent of the recombination cross section, and only
depends on the effective decay rate. In the opposite limit
�eff
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which is a straightforward generalization of eq. (16) and
independent of ionization rates �i

ion as well as transition
rates �i!j

trans. The reason is that efficient ionization and
recombination processes establish chemical equilibrium
with the unbound q̃ particles in that case for each bound
state. This means, in turn, that they are in chemical
equilibrium among each other, such that the transition
processes play no role for their relative abundances in
that limit. This result agrees with the finding in [35],
where a set of bound states in ionization equilibrium was
considered.

Indeed, it is easy to see that eq. (33) follows from both
the effective cross section in either the limiting case of no
transitions or the case of efficient transitions when assum-
ing in addition that �i

ion � �i
dec. Moreover, the fact that

eq. (33) is even valid independently of the size of tran-
sition rates can be seen by noticing that the derivation
presented in Sec. III B 2 relies only on the assumption of
chemical equilibrium among the bound states, which is
satisfied in ionization equilibrium.

Therefore, as long as ionization equilibrium holds, the
effective cross section is only sensitive to the bound state
decay rates, independently of the size of transition and
ionization rates.

In a realistic setup, the limiting assumptions made
above may be too restrictive, and at best hold only for a
subset of bound states, and a subset of the corresponding
ionization, decay or transition processes. In this case, the
effective cross section can be computed using the general
result, eq. (23).

IV. RATES

While the discussion in the previous section was
generic, we focus on the set of bound states and ion-
ization, decay and transition rates that are relevant for
the scalar mediator q̃ that carries hypercharge and trans-
forms under the fundamental representation of SU(Nc)
with Nc = 3 in the following.

A heavy (mq̃ � ⇤QCD), non-relativistic q̃q̃† pair can
be described by two wavefunctions  [R], one for the color
octet ([8]) and one for the color singlet ([1]) configura-
tion. They obey a Schrödinger equation with kinetic en-
ergy p2

rel/(2µ), where

µ = mq̃/2 , (34)

is the reduced mass, and potential in Coulomb approxi-
mation [26]
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FIG. 1: Bound-state formation cross section, eq. (49), for the strong (left) and elecromagnetic process (right). We show the
sum

P
` S

BSF
n` (⇣s, ⇣b) (solid lines) as well as the ` = 0 contribution only (dashed lines). The various colors corresponds to

the principal quantum numbers n = 1, . . . , 6, as given in the legend. For large ↵s/vrel the cross section of the strong process
is Sommerfeld suppressed due to the repulsive interaction of the q̃q̃† pair in the octet representation, while it is Sommerfeld
enhanced for the electromagnetic process, involving a scattering wave function in the color singlet configuration.

tion, and the first from `0 = ` � 1 exists only for ` > 0.
The contribution from ` = 0 orbitals therefore dominates
for ↵s/vrel ⌧ 1, as can also be seen by the convergence
of solid and dashed lines for each n � 2 in Fig. 1 in that
limit.

In the opposite limit ↵s/vrel � 1,

SBSF
n` (⇣s, ⇣b) !

2⇡⇣s
1� e�2⇡⇣s

fBSF
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✓
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(55)

where

fBSF
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✓
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◆
= e�

4n⇣s
⇣b

sBSF
n` |4n�2`

⇣4n�2`
b

. (56)

Here sBSF
n` |4n�2` corresponds to the polynomial obtained

when keeping only the terms with maximal combined
power in ⇣s and ⇣b in sBSF

n` (⇣s, ⇣b), being 4n�2`, such that
fBSF
n` depends only on the ratio ⇣s/⇣b = ↵eff

s /↵eff
b . Up to

the different renormalization scale at which the effective
couplings are evaluated, fBSF

n` approaches a constant for
↵s/vrel � 1.

The behavior at small relative velocities is therefore
governed dominantly by the first factor in eq. (55). It
exhibits a qualitatively different behavior depending on
the sign of ⇣s. For (q̃q̃†)[8] ! B

[1]
n` + g, the repulsive

potential relevant for the initial state implies ⇣s < 0,
leading to an exponential suppression for small relative
velocities, SBSF

n` ! 2⇡|⇣s|e�2⇡|⇣s|fBSF
n` . For the electro-

magnetic process (q̃q̃†)[1] ! B
[1]
n` +�, both the initial and

final state wavefunction are sensitive to the attractive
color singlet potential, such that in particular ⇣s > 0,
and SBSF

n` ! 2⇡⇣sfBSF
n` grows with ⇣s / ↵s/vrel.

The different shape of SBSF
n` for the two processes can

clearly be seen in Fig. 1. For the electromagnetic process,

the combined contribution from all angular momentum
states

P
` S

BSF
n` decreases with increasing values of n, for

all velocities vrel. On the other hand, for the strong pro-
cess the exponential suppression at large ⇣s leads to a
maximum of SBSF

n` . Its position shifts to higher values of
↵s/vrel for excited states with increasing n. In addition,
the value at the maximum increases with n. This indi-
cates that excited levels become more and more relevant
the smaller the relative velocity, i.e. the lower the tem-
perature that is relevant for determining the relic density.

B. Decay

The leading decay process is due to annihilation of the
constituents of the bound state into a pair of gluons,
Bn` ! gg. Here, we briefly review the derivation of the
decay rate following [23], provide an expression for gen-
eral n (for ` = 0) and discuss the role of higher-order
corrections.

For a generic 1 ! N decay process Bn` !

X1X2 . . . XN the matrix element Mn` can be related
to the usual Feynman matrix element for the process
q̃(k1, i)+q̃†(k2, j) ! X1(p1)+· · ·+XN (pN ), with color in-
dices in the initial state contracted with P s

ij = �ij/
p
Nc,

that we denote by M
s(k1, k2, {pj}), via

Mn`m =

Z
d3q

(2⇡)3
 n`m(q)p

2Nq
M

s(K/2 + q,K/2� q, {pj}) ,

(57)
with Nq ! µ in the nonrelativistic limit, and bound state
wave function  n`m ⌘  [1]

n`m in momentum space, nor-
malized such that

R
d3x| n`m(x)|2 = 1 in position space.

Here K is the four-momentum of the bound state. The
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Non-abelian (unbroken) gauge theories:
▪ Unitarity-violation towards very small v 
   even for arbitrarily small couplings!
▪ Unitarization mechanism yet unknown
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Figure 1b. The leading order diagrams contributing to C⌫ . The external-momentum, colour-index
and space-time-index assignments are the same in all three diagrams.
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We are interested only in the spatial components of C⌫ , ⌫ “ 1, 2, 3,
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ii1,jj1 “ pCmedqaii1,jj1 ` pC1qaii1,jj1 ` pC2qaii1,jj1 . (2.22)
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X pair-annihilation
(hard process+Sommerfeld)
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▪ Steepening of slope w.r.t. Sommerfeld only
▪ Note: no unitarity violation within unconfined phase
▪ No bound-to-bound transition in ‘dark QCD’
   because no 1→1 transitions mediated by a gluon (8)

Effective annihilation cross section

U(1) ’Dark QED’ SU(3) ’Dark QCD’

� '
0.6

� '
1.1

[Binder, Garny, JH, Lederer, Urban 2308.01336]

6

been recently raised for monopole transitions in Ref. [16]
where partial-wave unitarity can be violated already for
capture into the ground state level n = 1.

For non-numerical evidence of unitarity violation in
non-Abelian gauge theories, a simple analytic expression
would be warranted. We managed to get an approximate
analytic result by taking two limits in Eq. (6): (i) ↵eff

s !

0 and subsequently (ii) ⇣̃b ! 1 where ⇣̃b = ↵
eff
b /(nv).

Taking these limits, we obtain the result for the s-wave
case in SU(Nc)

(�v)`
0=0
n,`=1 '

CF

N2
c

4↵

3

32⇡↵eff
b

µ2
n(n2

� 1), for (i) and (ii).

(9)

The two limits are justified for relative velocities which
fulfill the condition2

2⇡|↵eff
s | ⌧ v ⌧

↵
eff
b

2n2
. (10)

In this velocity regime, we compared our direct numerical
evaluation of Eq. (6) to the analytical result in Eq. (9)
for a variety of Nc and n values and find very good agree-
ment. The fact that the s-wave BSF cross section reaches
a constant value for the above velocity regime is another
non-trivial check of our numerical implementation also
for very large n.

However, the velocity regime may be too restricted to
analytically proof unitarity violation for contributions of
a single n. Namely, while for SU(Nc) the s-wave BSF
cross section approaches the unitarity limit for increasing
n, the velocity regime where the analytic expression is
valid becomes smaller and eventually – (very) close to
the unitarity bound – the condition in Eq. (10) cannot be
met. Nevertheless, if there exists a theory with ↵

eff
s = 0,

then there is no lower bound on v and violation of s-
wave unitarity can be shown with the above formula.
Notice that ↵

eff
s = 0 corresponds to the large Nc limit of

SU(Nc), which is, however, not justified for all velocities
for a finite Nc.

In the following, we explore phenomenological conse-
quences focusing on the regime compatible with pertur-
bativity and partial wave unitarity bounds.

III. SUPER CRITICAL BEHAVIOR

The impact of a set of bound states on the freeze-out
dynamics of some particle species, j, can under very gen-
eral conditions be described by the Boltzmann equation

ṅj + 3Hnj = �h�vieff[n
2
j � (neq

j )2] , (11)

2 For adjoint-to-singlet BSF in SU(Nc) ↵eff
s = �↵/(2Nc) and

↵eff
b = CF↵, where CF = (N2

c � 1)/(2Nc).

where nj is the number density and H the Hubble ex-
pansion rate. The effective cross section, h�vieff, includes
all the effects of pair annihilation as well as scattering-
bound [4] and bound-bound transitions [1, 14, 36]. Here,
we investigate whether the inclusion of an increasing
number of excited states can lead to an effective cross
section that grows sufficiently fast to maintain efficient
depletion of the (comoving) particle number density and,
hence, prevent the particle species (e.g. dark matter)
from freezing out. We call this condition a super crit-
ical behavior.

To obtain the threshold for such a super critical be-
havior, let us consider a typical scenario where a particle
species with mass m is initially in thermal equilibrium
with a heat bath with temperature T and entropy den-
sity s. We assume s / T

3, H / T
2, i.e. no (significant)

change in the relativistic degrees of freedom of the bath.
Introducing the yield as Yj ⌘ nj/s and parametrizing
time by x ⌘ m/T in Eq. (11), one can estimate the yield
evolution as a function of x as follows. For times where
the yield Yj(x) starts to deviate significantly from its
equilibrium value, Yj(x) � Y

eq
j (x), also known as the

time of chemical decoupling, xcd, one can neglect the im-
pact of Y eq

j (x) in the Boltzmann equation. This allows
for an analytic solution for the yield evolution after chem-
ical decoupling (see e.g. Ref. [57]), which up to constants,
can be estimated to scale as

Yj(x0) /
1R x0

xcd
dxx�2 h�vieff(x)

. (12)

The integral converges for x0 ! 1 only if h�vieff(x)
grows slower than x while for h�vieff / x

� with � � 1
the integral diverges. Accordingly, the particle species
only freezes out for � < 1 (typical WIMP) while the par-
ticle continues to deplete for � � 1. The critical value
� = 1 leads to logarithmic depletion and sets the thresh-
old for what we define a super critical behavior. Above
this threshold, the evolution of the yield approaches the
scaling Yj / x

1�� for x � xcd. In this case, the effective
annihilation rate �eff ⌘ njh�vieff is dynamically driven
to be proportional to the Hubble rate �eff / H.

In the presence of bound states, the effective cross sec-
tion introduced above can be written as [14, 36]

⌦
�v

↵
eff =

⌦
�v

↵
ann +

X

n,`

⌦
�v

↵
n`
Rn` , (13)

where the first term is the usual pair annihilation cross
section, thermally averaged. In all cases considered in
this work, it includes the Sommerfeld effect [58, 59].
The second term contains the thermal average of the
BSF cross sections, denoted as

⌦
�v

↵
n`

. The summation
over all bound-state quantum numbers contains a dimen-
sionless, temperature dependent quantity, which obeys
0  Rn`  1.3 Thus, the presence of bound states al-

3 Within the electric dipole approximation, bound states with dif-

� = 0.5
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point

⇥
h
2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
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are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Chemical equilibrium is a commonly made assumption in the freeze-out calculation of co-
annihilating dark matter. We explore the possible failure of this assumption and find a new
conversion-driven freeze-out mechanism. Considering a representative simplified model inspired
by supersymmetry with a neutralino- and sbottom-like particle we find regions in parameter space
with very small couplings accommodating the measured relic density. In this region freeze-out takes
place out of chemical equilibrium and dark matter self-annihilation is thoroughly ine�cient. The
relic density is governed primarily by the size of the conversion terms in the Boltzmann equations.
Due to the small dark matter coupling the parameter region is immune to direct detection but
predicts an interesting signature of disappearing tracks or displaced vertices at the LHC.

INTRODUCTION

The origin and the nature of the dark matter (DM)
in the Universe is one of the most pressing questions in
particle- and astrophysics. Despite impressive e�orts to
uncover its interactions with the Standard Model (SM)
of particle physics in (in)direct detection and accelerator
based experiments, DM remains elusive and, so far, our
understanding is essentially limited to its gravitational
interactions (see e.g. [1, 2]). It is therefore of utmost
interest to investigate mechanisms for the generation of
DM in the early Universe that go beyond the widely stud-
ied paradigm of thermal freeze-out, and that can point
towards non-standard signatures.

In this spirit we subject the well-known co-annihilation
scenario [3] to further scrutiny and investigate the im-
portance of the commonly made assumption of chem-
ical equilibrium (CE) between the DM and the co-
annihilation partner. This requires solving the full set of
coupled Boltzmann equations which has been performed
in the context of specific supersymmetric scenarios [4, 5].
Here we consider a simplified DM model and explore the
break-down of CE in detail finding a new, conversion
driven solution for DM freeze-out which points towards
a small interaction strength of the DM particle with the
SM bath. While the smallness of the coupling renders
most of the conventional signatures of DM unobservable,
new opportunities for collider searches arise. In partic-
ular we find that searches for long-lived particles at the
LHC are very powerful tools for testing conversion-driven
freeze-out.

The structure of the paper is as follows: We begin by
introducing a simplified model for co-annihilations before
we present the Boltzmann equations which govern the
DM freeze-out. Next, we investigate conversion-driven
solutions to the Boltzmann equations and confront the
regions of parameter which allow for a successful gener-

ation of DM with LHC searches. Finally, we summarize
our results and conclude.

SIMPLIFIED MODEL FOR CO-ANNIHILATION

While the precise impact of the breakdown of CE be-
tween the DM and its co-annihilation partner will in gen-
eral depend on the details of the considered model, the
key aspects of the phenomenology can be expected to be
universal. As a representative case we choose a simpli-
fied model for DM interacting with quarks. We extend
the matter content of the SM minimally by a Majorana
fermion ⇤, being a singlet under the SM gauge group,
and a scalar quark-partner �q, mediating the interactions
with the SM and acting as the co-annihilation partner.
The interactions of the new particles among themselves
and with the SM are given by [6]

Lint = |Dµ�q|2 � ⇥⇤�qq̄
1� �5

2
⇤+ h.c., (1)

where q is a SM quark field, Dµ denotes the covariant
derivative, which contains the interactions of �q with the
gauge bosons as determined by its quantum numbers,
and ⇥⇤ is a Yukawa coupling. Here we choose q = b and
Y = � 1

3 . For the coupling ⇥⇤ = 1
3

⇧
2 e
cos �W

⇥ 0.17 our
simplified model makes contact with the Minimal Super-
symmetric SM where �b can be identified with a right-
handed sbottom and ⇤ with a bino-like neutralino. How-
ever, we will vary ⇥⇤ in our analysis. Nevertheless, we
will refer to the scalar mediator as sbottom, denoted by
�b, even though it does not share all the properties of a
super-partner of the b-quark. Note that choosing a top-
partner instead yields similar results although quantita-
tive di�erences arise due to the large top mass.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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sity on the initial condition is also indicated in Fig. 4 by
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details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
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would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
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ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Chemical equilibrium is a commonly made assumption in the freeze-out calculation of co-
annihilating dark matter. We explore the possible failure of this assumption and find a new
conversion-driven freeze-out mechanism. Considering a representative simplified model inspired
by supersymmetry with a neutralino- and sbottom-like particle we find regions in parameter space
with very small couplings accommodating the measured relic density. In this region freeze-out takes
place out of chemical equilibrium and dark matter self-annihilation is thoroughly ine�cient. The
relic density is governed primarily by the size of the conversion terms in the Boltzmann equations.
Due to the small dark matter coupling the parameter region is immune to direct detection but
predicts an interesting signature of disappearing tracks or displaced vertices at the LHC.

INTRODUCTION

The origin and the nature of the dark matter (DM)
in the Universe is one of the most pressing questions in
particle- and astrophysics. Despite impressive e�orts to
uncover its interactions with the Standard Model (SM)
of particle physics in (in)direct detection and accelerator
based experiments, DM remains elusive and, so far, our
understanding is essentially limited to its gravitational
interactions (see e.g. [1, 2]). It is therefore of utmost
interest to investigate mechanisms for the generation of
DM in the early Universe that go beyond the widely stud-
ied paradigm of thermal freeze-out, and that can point
towards non-standard signatures.

In this spirit we subject the well-known co-annihilation
scenario [3] to further scrutiny and investigate the im-
portance of the commonly made assumption of chem-
ical equilibrium (CE) between the DM and the co-
annihilation partner. This requires solving the full set of
coupled Boltzmann equations which has been performed
in the context of specific supersymmetric scenarios [4, 5].
Here we consider a simplified DM model and explore the
break-down of CE in detail finding a new, conversion
driven solution for DM freeze-out which points towards
a small interaction strength of the DM particle with the
SM bath. While the smallness of the coupling renders
most of the conventional signatures of DM unobservable,
new opportunities for collider searches arise. In partic-
ular we find that searches for long-lived particles at the
LHC are very powerful tools for testing conversion-driven
freeze-out.

The structure of the paper is as follows: We begin by
introducing a simplified model for co-annihilations before
we present the Boltzmann equations which govern the
DM freeze-out. Next, we investigate conversion-driven
solutions to the Boltzmann equations and confront the
regions of parameter which allow for a successful gener-

ation of DM with LHC searches. Finally, we summarize
our results and conclude.

SIMPLIFIED MODEL FOR CO-ANNIHILATION

While the precise impact of the breakdown of CE be-
tween the DM and its co-annihilation partner will in gen-
eral depend on the details of the considered model, the
key aspects of the phenomenology can be expected to be
universal. As a representative case we choose a simpli-
fied model for DM interacting with quarks. We extend
the matter content of the SM minimally by a Majorana
fermion ⇤, being a singlet under the SM gauge group,
and a scalar quark-partner �q, mediating the interactions
with the SM and acting as the co-annihilation partner.
The interactions of the new particles among themselves
and with the SM are given by [6]

Lint = |Dµ�q|2 � ⇥⇤�qq̄
1� �5

2
⇤+ h.c., (1)

where q is a SM quark field, Dµ denotes the covariant
derivative, which contains the interactions of �q with the
gauge bosons as determined by its quantum numbers,
and ⇥⇤ is a Yukawa coupling. Here we choose q = b and
Y = � 1

3 . For the coupling ⇥⇤ = 1
3

⇧
2 e
cos �W

⇥ 0.17 our
simplified model makes contact with the Minimal Super-
symmetric SM where �b can be identified with a right-
handed sbottom and ⇤ with a bino-like neutralino. How-
ever, we will vary ⇥⇤ in our analysis. Nevertheless, we
will refer to the scalar mediator as sbottom, denoted by
�b, even though it does not share all the properties of a
super-partner of the b-quark. Note that choosing a top-
partner instead yields similar results although quantita-
tive di�erences arise due to the large top mass.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq
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curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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superWIMP scenario

▪ Coupling                           , dark matter thermally decoupled
▪ Produced in late decays of frozen out  
   ⇒ Relic density independent of 
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

Does the picture change with bound states?
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Effective annihilation cross section

▪    also electrically charged: dipole transitions                 via photons
  ⇒ High impact on slope, super-critical (even w/o running)
▪ No unitarity-violating XS involved in unconfined phase, i.e. 

q̃

[Binder, Garny, JH, Lederer, Urban 2308.01336]

Bnl $ Bn0l0

T > ⇤QCD
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Impact on the relic abundance
[Binder, Garny, JH, Lederer, Urban 2308.01336]

▪ Excited bound states
   highly relevant

▪ No freeze-out before
   decay (                    )

▪ Order-of-magnitude
   effect on relic density

Tdecay>1GeV
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Impact on the relic abundance
[Binder, Garny, JH, Lederer, Urban 2308.01336]

} Bound states introduce
dependence on      in
superWIMP production! 
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

Jan Heisig                                                                                                                                                                   23



Impact on the relic abundance
[Binder, Garny, JH, Lederer, Urban 2308.01336]
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

Relevant for constraints from 
cosmological structure formation
(Lyman-alpha forest observations)
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Conversion-driven freeze-out

▪ Coupling                 just large enough 
   to thermalize dark matter
▪ Conversions on the edge of being efficient
             , initiate chemical decoupling
   ⇒ prolonged freeze-out process
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[Garny, JH, Lülf,  Vogl 2017; D'Agnolo, Pappadopulo, Ruderman 2017]
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point

⇥
h
2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Large mass splittings                        require large �m = mq̃ �m�
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

Schem
atic log-log plot

re
lic

 d
en

si
ty

⇠ 1

1

⇠ 10�6

1

⇠ 10�12

1

⇠ 0.12

ca
n
on

ic
al

fr
ee
ze
-o
u
t

co
nv

er
si
on

fr
ee
ze
-o
u
t

Conversion-driven freeze-out
[Garny, JH, Lülf,  Vogl 2017; D'Agnolo, Pappadopulo, Ruderman 2017]

Smaller mass splittings                        require 
much smaller    : sudden drop in the coupling!

�m = mq̃ �m�
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Conversion-driven freeze-out
[Garny, JH, Lülf,  Vogl 2017; D'Agnolo, Pappadopulo, Ruderman 2017]

Boundary between WIMP and conversion-driven region 
at characteristic �m = mq̃ �m�
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FIG. 7: Contours for which dark matter coannihilation yields
a relic abundance that matches the observed value, for three
fixed values of the coupling ��. Red lines show the leading
order result, and blue lines the result when including bound
states up to n = 15 as well as Sommerfeld enhancement. For
the relevance of individual corrections, we refer to Fig. 6. The
boundary to the conversion-driven regime is also shown.

to our fiducial approximation that includes Sommerfeld
enhancement and bound states up to n = 15. It is appar-
ent that the blue contours allow for significantly larger
masses m� for a given ��. For example, for �� = 0.5
and �m = 20GeV, the mass for which the relic density
matches the observed value shifts from m� ' 1.2TeV
to 2TeV when including the aforementioned corrections.
For the MSSM value, �� = 0.169, the contour almost
coincides with the boundary, and the mass shifts from
m� ' 0.9TeV to 1.8TeV (for �m = 20GeV). In addition,
for a very small mass splitting, including bound states al-
lows for mediator masses in the multi-TeV regime, around
m� = 3TeV for �m = 5GeV. This shift can be ex-
pected to be of major relevance for experimental searches
for colored t-channel mediators within the coannihilation
regime. It re-opens part of the parameter space that is
constraint by conventional dark matter searches.

C. Conversion-driven regime and collider limits

In Fig. 8 we show the viable parameter space within the
regime of conversion-driven freeze-out. The value of the
coupling that is required to obtain the measured dark
matter abundance is of order 10�6

�10�7 in that case.
We show several contours for ��/10�7 = 2, 3, 5, 7. The
smallness of the coupling implies that this production
mechanism is compatible with null results from direct
and indirect dark matter detection experiments, while
still providing an explanation of the abundance of dark
matter that is insensitive to the initial conditions.

The decay length c⌧ of the mediator, where ⌧ is its life-
time, is shown by the grey contour lines in Fig. 8. It is of

the order of a few cm to 1m within most of the parameter
space, going down to 1mm close to the boundary. For
the freeze-out computation, we limit ourselves to the pa-
rameter space where �m > mb, such that the two-body
decay q̃ ! �b is kinematically allowed. For even smaller
mass splitting, conversions proceed via scatterings, and
the mediator would be stable on detector time scales.

The primary signal of conversion-driven dark mat-
ter production with a colored mediator are searches for
heavy, (meta-)stable colored particles at the LHC. For
�m < mb, the colored mediator becomes detector sta-
ble as its decay is 4-body suppressed. We can directly
apply the limit from the 13TeV ATLAS search [48] de-
rived for an R-hadron containing a b-squark. It excludes
masses below 1250GeV. The resulting limit is shown in
Fig. 8 as a solid blue curve (and blue shaded exclusion
region). For larger �m the decay length is in the range
1mm ⇠ 1m such that a sizeable fraction of decays take
place inside the inner detector. To estimate the reach
of the same search for this case, we employ the reported
cross section upper limits for the muon-system-agnostic
analysis for a b-squark R-hadron. We rescale them by
the relative suppression of the cross section upper limits
towards small lifetimes reported in the similar ATLAS
analysis [49] where the case of a gluino R-hadron has
been considered. Note that this introduces a certain level
of approximation. A recasting of the search is, however,
beyond the scope of this work. We use the cross-section
predictions from [50]. The resulting limit is displayed
as the blue, dashed curve in Fig. 8. Furthermore, we
display the limit from the recasting of the CMS 13 TeV
R-hadron search [51] performed in [15] as the blue, dot-
dashed curve.

Being only sensitive to the fraction of R-hadrons
traversing a significant part of the detector, the sensitiv-
ity of these searches is exponentially suppressed for small
lifetimes. Dedicated analyses exploiting the displaced na-
ture of the decay are, hence, expected to greatly improve
the sensitivity to this scenario. While several such analy-
ses have been performed by the collaborations, their tar-
get model differs considerably from the one considered
here, significantly reducing their reach or raising ques-
tions about their applicability as pointed out in [52] (con-
tribution 7). For instance, the sensitivity of the displaced
jets search [53] considerably suffers from the imposed cut
on the invariant mass of the displaced tracks. While the
respective choice was optimized for the scenario consid-
ered in the search, it reduces the signal of the one consid-
ered here by around two orders of magnitude [52]. This
is due to its relatively small mass splittings �m of order
tens of GeV in our scenario, resulting in softer tracks.
The search has been targeted to mass splittings of the
order of hundreds of GeV.

Another example of a potentially sensitive search is
the one for disappearing tracks. The existing searches
are targeted to charginos whose long lifetime arises due
to a tiny mass splitting, O(100MeV), to the dark matter
particle. Accordingly, in the decay, an ultra-soft pion is
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FIG. 7: Contours for which dark matter coannihilation yields
a relic abundance that matches the observed value, for three
fixed values of the coupling ��. Red lines show the leading
order result, and blue lines the result when including bound
states up to n = 15 as well as Sommerfeld enhancement. For
the relevance of individual corrections, we refer to Fig. 6. The
boundary to the conversion-driven regime is also shown.

to our fiducial approximation that includes Sommerfeld
enhancement and bound states up to n = 15. It is appar-
ent that the blue contours allow for significantly larger
masses m� for a given ��. For example, for �� = 0.5
and �m = 20GeV, the mass for which the relic density
matches the observed value shifts from m� ' 1.2TeV
to 2TeV when including the aforementioned corrections.
For the MSSM value, �� = 0.169, the contour almost
coincides with the boundary, and the mass shifts from
m� ' 0.9TeV to 1.8TeV (for �m = 20GeV). In addition,
for a very small mass splitting, including bound states al-
lows for mediator masses in the multi-TeV regime, around
m� = 3TeV for �m = 5GeV. This shift can be ex-
pected to be of major relevance for experimental searches
for colored t-channel mediators within the coannihilation
regime. It re-opens part of the parameter space that is
constraint by conventional dark matter searches.

C. Conversion-driven regime and collider limits

In Fig. 8 we show the viable parameter space within the
regime of conversion-driven freeze-out. The value of the
coupling that is required to obtain the measured dark
matter abundance is of order 10�6

�10�7 in that case.
We show several contours for ��/10�7 = 2, 3, 5, 7. The
smallness of the coupling implies that this production
mechanism is compatible with null results from direct
and indirect dark matter detection experiments, while
still providing an explanation of the abundance of dark
matter that is insensitive to the initial conditions.

The decay length c⌧ of the mediator, where ⌧ is its life-
time, is shown by the grey contour lines in Fig. 8. It is of

the order of a few cm to 1m within most of the parameter
space, going down to 1mm close to the boundary. For
the freeze-out computation, we limit ourselves to the pa-
rameter space where �m > mb, such that the two-body
decay q̃ ! �b is kinematically allowed. For even smaller
mass splitting, conversions proceed via scatterings, and
the mediator would be stable on detector time scales.

The primary signal of conversion-driven dark mat-
ter production with a colored mediator are searches for
heavy, (meta-)stable colored particles at the LHC. For
�m < mb, the colored mediator becomes detector sta-
ble as its decay is 4-body suppressed. We can directly
apply the limit from the 13TeV ATLAS search [48] de-
rived for an R-hadron containing a b-squark. It excludes
masses below 1250GeV. The resulting limit is shown in
Fig. 8 as a solid blue curve (and blue shaded exclusion
region). For larger �m the decay length is in the range
1mm ⇠ 1m such that a sizeable fraction of decays take
place inside the inner detector. To estimate the reach
of the same search for this case, we employ the reported
cross section upper limits for the muon-system-agnostic
analysis for a b-squark R-hadron. We rescale them by
the relative suppression of the cross section upper limits
towards small lifetimes reported in the similar ATLAS
analysis [49] where the case of a gluino R-hadron has
been considered. Note that this introduces a certain level
of approximation. A recasting of the search is, however,
beyond the scope of this work. We use the cross-section
predictions from [50]. The resulting limit is displayed
as the blue, dashed curve in Fig. 8. Furthermore, we
display the limit from the recasting of the CMS 13 TeV
R-hadron search [51] performed in [15] as the blue, dot-
dashed curve.

Being only sensitive to the fraction of R-hadrons
traversing a significant part of the detector, the sensitiv-
ity of these searches is exponentially suppressed for small
lifetimes. Dedicated analyses exploiting the displaced na-
ture of the decay are, hence, expected to greatly improve
the sensitivity to this scenario. While several such analy-
ses have been performed by the collaborations, their tar-
get model differs considerably from the one considered
here, significantly reducing their reach or raising ques-
tions about their applicability as pointed out in [52] (con-
tribution 7). For instance, the sensitivity of the displaced
jets search [53] considerably suffers from the imposed cut
on the invariant mass of the displaced tracks. While the
respective choice was optimized for the scenario consid-
ered in the search, it reduces the signal of the one consid-
ered here by around two orders of magnitude [52]. This
is due to its relatively small mass splittings �m of order
tens of GeV in our scenario, resulting in softer tracks.
The search has been targeted to mass splittings of the
order of hundreds of GeV.

Another example of a potentially sensitive search is
the one for disappearing tracks. The existing searches
are targeted to charginos whose long lifetime arises due
to a tiny mass splitting, O(100MeV), to the dark matter
particle. Accordingly, in the decay, an ultra-soft pion is

Jan Heisig                                                                                                                                                                  27

[Garny, JH 2112.01499]

Boundary,     drops from        to   O(1)��⇠ 10�6 ��⇠ 10�6

WIMP region �� ⇠ O(1)



Bound state effects on the parameter space
16

pert.

BS, n≤15

Ωh2= 0.12
λχ= 1
λχ= 0.5
λSUSY
boundary line

1000 2000 3000 4000
0

10

20

30

40

50

60

70

mχ [GeV]

Δ
m
[G
eV

]

FIG. 7: Contours for which dark matter coannihilation yields
a relic abundance that matches the observed value, for three
fixed values of the coupling ��. Red lines show the leading
order result, and blue lines the result when including bound
states up to n = 15 as well as Sommerfeld enhancement. For
the relevance of individual corrections, we refer to Fig. 6. The
boundary to the conversion-driven regime is also shown.

to our fiducial approximation that includes Sommerfeld
enhancement and bound states up to n = 15. It is appar-
ent that the blue contours allow for significantly larger
masses m� for a given ��. For example, for �� = 0.5
and �m = 20GeV, the mass for which the relic density
matches the observed value shifts from m� ' 1.2TeV
to 2TeV when including the aforementioned corrections.
For the MSSM value, �� = 0.169, the contour almost
coincides with the boundary, and the mass shifts from
m� ' 0.9TeV to 1.8TeV (for �m = 20GeV). In addition,
for a very small mass splitting, including bound states al-
lows for mediator masses in the multi-TeV regime, around
m� = 3TeV for �m = 5GeV. This shift can be ex-
pected to be of major relevance for experimental searches
for colored t-channel mediators within the coannihilation
regime. It re-opens part of the parameter space that is
constraint by conventional dark matter searches.

C. Conversion-driven regime and collider limits

In Fig. 8 we show the viable parameter space within the
regime of conversion-driven freeze-out. The value of the
coupling that is required to obtain the measured dark
matter abundance is of order 10�6

�10�7 in that case.
We show several contours for ��/10�7 = 2, 3, 5, 7. The
smallness of the coupling implies that this production
mechanism is compatible with null results from direct
and indirect dark matter detection experiments, while
still providing an explanation of the abundance of dark
matter that is insensitive to the initial conditions.

The decay length c⌧ of the mediator, where ⌧ is its life-
time, is shown by the grey contour lines in Fig. 8. It is of

the order of a few cm to 1m within most of the parameter
space, going down to 1mm close to the boundary. For
the freeze-out computation, we limit ourselves to the pa-
rameter space where �m > mb, such that the two-body
decay q̃ ! �b is kinematically allowed. For even smaller
mass splitting, conversions proceed via scatterings, and
the mediator would be stable on detector time scales.

The primary signal of conversion-driven dark mat-
ter production with a colored mediator are searches for
heavy, (meta-)stable colored particles at the LHC. For
�m < mb, the colored mediator becomes detector sta-
ble as its decay is 4-body suppressed. We can directly
apply the limit from the 13TeV ATLAS search [48] de-
rived for an R-hadron containing a b-squark. It excludes
masses below 1250GeV. The resulting limit is shown in
Fig. 8 as a solid blue curve (and blue shaded exclusion
region). For larger �m the decay length is in the range
1mm ⇠ 1m such that a sizeable fraction of decays take
place inside the inner detector. To estimate the reach
of the same search for this case, we employ the reported
cross section upper limits for the muon-system-agnostic
analysis for a b-squark R-hadron. We rescale them by
the relative suppression of the cross section upper limits
towards small lifetimes reported in the similar ATLAS
analysis [49] where the case of a gluino R-hadron has
been considered. Note that this introduces a certain level
of approximation. A recasting of the search is, however,
beyond the scope of this work. We use the cross-section
predictions from [50]. The resulting limit is displayed
as the blue, dashed curve in Fig. 8. Furthermore, we
display the limit from the recasting of the CMS 13 TeV
R-hadron search [51] performed in [15] as the blue, dot-
dashed curve.

Being only sensitive to the fraction of R-hadrons
traversing a significant part of the detector, the sensitiv-
ity of these searches is exponentially suppressed for small
lifetimes. Dedicated analyses exploiting the displaced na-
ture of the decay are, hence, expected to greatly improve
the sensitivity to this scenario. While several such analy-
ses have been performed by the collaborations, their tar-
get model differs considerably from the one considered
here, significantly reducing their reach or raising ques-
tions about their applicability as pointed out in [52] (con-
tribution 7). For instance, the sensitivity of the displaced
jets search [53] considerably suffers from the imposed cut
on the invariant mass of the displaced tracks. While the
respective choice was optimized for the scenario consid-
ered in the search, it reduces the signal of the one consid-
ered here by around two orders of magnitude [52]. This
is due to its relatively small mass splittings �m of order
tens of GeV in our scenario, resulting in softer tracks.
The search has been targeted to mass splittings of the
order of hundreds of GeV.

Another example of a potentially sensitive search is
the one for disappearing tracks. The existing searches
are targeted to charginos whose long lifetime arises due
to a tiny mass splitting, O(100MeV), to the dark matter
particle. Accordingly, in the decay, an ultra-soft pion is
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FIG. 7: Contours for which dark matter coannihilation yields
a relic abundance that matches the observed value, for three
fixed values of the coupling ��. Red lines show the leading
order result, and blue lines the result when including bound
states up to n = 15 as well as Sommerfeld enhancement. For
the relevance of individual corrections, we refer to Fig. 6. The
boundary to the conversion-driven regime is also shown.

to our fiducial approximation that includes Sommerfeld
enhancement and bound states up to n = 15. It is appar-
ent that the blue contours allow for significantly larger
masses m� for a given ��. For example, for �� = 0.5
and �m = 20GeV, the mass for which the relic density
matches the observed value shifts from m� ' 1.2TeV
to 2TeV when including the aforementioned corrections.
For the MSSM value, �� = 0.169, the contour almost
coincides with the boundary, and the mass shifts from
m� ' 0.9TeV to 1.8TeV (for �m = 20GeV). In addition,
for a very small mass splitting, including bound states al-
lows for mediator masses in the multi-TeV regime, around
m� = 3TeV for �m = 5GeV. This shift can be ex-
pected to be of major relevance for experimental searches
for colored t-channel mediators within the coannihilation
regime. It re-opens part of the parameter space that is
constraint by conventional dark matter searches.

C. Conversion-driven regime and collider limits

In Fig. 8 we show the viable parameter space within the
regime of conversion-driven freeze-out. The value of the
coupling that is required to obtain the measured dark
matter abundance is of order 10�6

�10�7 in that case.
We show several contours for ��/10�7 = 2, 3, 5, 7. The
smallness of the coupling implies that this production
mechanism is compatible with null results from direct
and indirect dark matter detection experiments, while
still providing an explanation of the abundance of dark
matter that is insensitive to the initial conditions.

The decay length c⌧ of the mediator, where ⌧ is its life-
time, is shown by the grey contour lines in Fig. 8. It is of

the order of a few cm to 1m within most of the parameter
space, going down to 1mm close to the boundary. For
the freeze-out computation, we limit ourselves to the pa-
rameter space where �m > mb, such that the two-body
decay q̃ ! �b is kinematically allowed. For even smaller
mass splitting, conversions proceed via scatterings, and
the mediator would be stable on detector time scales.

The primary signal of conversion-driven dark mat-
ter production with a colored mediator are searches for
heavy, (meta-)stable colored particles at the LHC. For
�m < mb, the colored mediator becomes detector sta-
ble as its decay is 4-body suppressed. We can directly
apply the limit from the 13TeV ATLAS search [48] de-
rived for an R-hadron containing a b-squark. It excludes
masses below 1250GeV. The resulting limit is shown in
Fig. 8 as a solid blue curve (and blue shaded exclusion
region). For larger �m the decay length is in the range
1mm ⇠ 1m such that a sizeable fraction of decays take
place inside the inner detector. To estimate the reach
of the same search for this case, we employ the reported
cross section upper limits for the muon-system-agnostic
analysis for a b-squark R-hadron. We rescale them by
the relative suppression of the cross section upper limits
towards small lifetimes reported in the similar ATLAS
analysis [49] where the case of a gluino R-hadron has
been considered. Note that this introduces a certain level
of approximation. A recasting of the search is, however,
beyond the scope of this work. We use the cross-section
predictions from [50]. The resulting limit is displayed
as the blue, dashed curve in Fig. 8. Furthermore, we
display the limit from the recasting of the CMS 13 TeV
R-hadron search [51] performed in [15] as the blue, dot-
dashed curve.

Being only sensitive to the fraction of R-hadrons
traversing a significant part of the detector, the sensitiv-
ity of these searches is exponentially suppressed for small
lifetimes. Dedicated analyses exploiting the displaced na-
ture of the decay are, hence, expected to greatly improve
the sensitivity to this scenario. While several such analy-
ses have been performed by the collaborations, their tar-
get model differs considerably from the one considered
here, significantly reducing their reach or raising ques-
tions about their applicability as pointed out in [52] (con-
tribution 7). For instance, the sensitivity of the displaced
jets search [53] considerably suffers from the imposed cut
on the invariant mass of the displaced tracks. While the
respective choice was optimized for the scenario consid-
ered in the search, it reduces the signal of the one consid-
ered here by around two orders of magnitude [52]. This
is due to its relatively small mass splittings �m of order
tens of GeV in our scenario, resulting in softer tracks.
The search has been targeted to mass splittings of the
order of hundreds of GeV.

Another example of a potentially sensitive search is
the one for disappearing tracks. The existing searches
are targeted to charginos whose long lifetime arises due
to a tiny mass splitting, O(100MeV), to the dark matter
particle. Accordingly, in the decay, an ultra-soft pion is
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FIG. 7: Contours for which dark matter coannihilation yields
a relic abundance that matches the observed value, for three
fixed values of the coupling ��. Red lines show the leading
order result, and blue lines the result when including bound
states up to n = 15 as well as Sommerfeld enhancement. For
the relevance of individual corrections, we refer to Fig. 6. The
boundary to the conversion-driven regime is also shown.

to our fiducial approximation that includes Sommerfeld
enhancement and bound states up to n = 15. It is appar-
ent that the blue contours allow for significantly larger
masses m� for a given ��. For example, for �� = 0.5
and �m = 20GeV, the mass for which the relic density
matches the observed value shifts from m� ' 1.2TeV
to 2TeV when including the aforementioned corrections.
For the MSSM value, �� = 0.169, the contour almost
coincides with the boundary, and the mass shifts from
m� ' 0.9TeV to 1.8TeV (for �m = 20GeV). In addition,
for a very small mass splitting, including bound states al-
lows for mediator masses in the multi-TeV regime, around
m� = 3TeV for �m = 5GeV. This shift can be ex-
pected to be of major relevance for experimental searches
for colored t-channel mediators within the coannihilation
regime. It re-opens part of the parameter space that is
constraint by conventional dark matter searches.

C. Conversion-driven regime and collider limits

In Fig. 8 we show the viable parameter space within the
regime of conversion-driven freeze-out. The value of the
coupling that is required to obtain the measured dark
matter abundance is of order 10�6

�10�7 in that case.
We show several contours for ��/10�7 = 2, 3, 5, 7. The
smallness of the coupling implies that this production
mechanism is compatible with null results from direct
and indirect dark matter detection experiments, while
still providing an explanation of the abundance of dark
matter that is insensitive to the initial conditions.

The decay length c⌧ of the mediator, where ⌧ is its life-
time, is shown by the grey contour lines in Fig. 8. It is of

the order of a few cm to 1m within most of the parameter
space, going down to 1mm close to the boundary. For
the freeze-out computation, we limit ourselves to the pa-
rameter space where �m > mb, such that the two-body
decay q̃ ! �b is kinematically allowed. For even smaller
mass splitting, conversions proceed via scatterings, and
the mediator would be stable on detector time scales.

The primary signal of conversion-driven dark mat-
ter production with a colored mediator are searches for
heavy, (meta-)stable colored particles at the LHC. For
�m < mb, the colored mediator becomes detector sta-
ble as its decay is 4-body suppressed. We can directly
apply the limit from the 13TeV ATLAS search [48] de-
rived for an R-hadron containing a b-squark. It excludes
masses below 1250GeV. The resulting limit is shown in
Fig. 8 as a solid blue curve (and blue shaded exclusion
region). For larger �m the decay length is in the range
1mm ⇠ 1m such that a sizeable fraction of decays take
place inside the inner detector. To estimate the reach
of the same search for this case, we employ the reported
cross section upper limits for the muon-system-agnostic
analysis for a b-squark R-hadron. We rescale them by
the relative suppression of the cross section upper limits
towards small lifetimes reported in the similar ATLAS
analysis [49] where the case of a gluino R-hadron has
been considered. Note that this introduces a certain level
of approximation. A recasting of the search is, however,
beyond the scope of this work. We use the cross-section
predictions from [50]. The resulting limit is displayed
as the blue, dashed curve in Fig. 8. Furthermore, we
display the limit from the recasting of the CMS 13 TeV
R-hadron search [51] performed in [15] as the blue, dot-
dashed curve.

Being only sensitive to the fraction of R-hadrons
traversing a significant part of the detector, the sensitiv-
ity of these searches is exponentially suppressed for small
lifetimes. Dedicated analyses exploiting the displaced na-
ture of the decay are, hence, expected to greatly improve
the sensitivity to this scenario. While several such analy-
ses have been performed by the collaborations, their tar-
get model differs considerably from the one considered
here, significantly reducing their reach or raising ques-
tions about their applicability as pointed out in [52] (con-
tribution 7). For instance, the sensitivity of the displaced
jets search [53] considerably suffers from the imposed cut
on the invariant mass of the displaced tracks. While the
respective choice was optimized for the scenario consid-
ered in the search, it reduces the signal of the one consid-
ered here by around two orders of magnitude [52]. This
is due to its relatively small mass splittings �m of order
tens of GeV in our scenario, resulting in softer tracks.
The search has been targeted to mass splittings of the
order of hundreds of GeV.

Another example of a potentially sensitive search is
the one for disappearing tracks. The existing searches
are targeted to charginos whose long lifetime arises due
to a tiny mass splitting, O(100MeV), to the dark matter
particle. Accordingly, in the decay, an ultra-soft pion is
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a relic abundance that matches the observed value, for three
fixed values of the coupling ��. Red lines show the leading
order result, and blue lines the result when including bound
states up to n = 15 as well as Sommerfeld enhancement. For
the relevance of individual corrections, we refer to Fig. 6. The
boundary to the conversion-driven regime is also shown.

to our fiducial approximation that includes Sommerfeld
enhancement and bound states up to n = 15. It is appar-
ent that the blue contours allow for significantly larger
masses m� for a given ��. For example, for �� = 0.5
and �m = 20GeV, the mass for which the relic density
matches the observed value shifts from m� ' 1.2TeV
to 2TeV when including the aforementioned corrections.
For the MSSM value, �� = 0.169, the contour almost
coincides with the boundary, and the mass shifts from
m� ' 0.9TeV to 1.8TeV (for �m = 20GeV). In addition,
for a very small mass splitting, including bound states al-
lows for mediator masses in the multi-TeV regime, around
m� = 3TeV for �m = 5GeV. This shift can be ex-
pected to be of major relevance for experimental searches
for colored t-channel mediators within the coannihilation
regime. It re-opens part of the parameter space that is
constraint by conventional dark matter searches.

C. Conversion-driven regime and collider limits

In Fig. 8 we show the viable parameter space within the
regime of conversion-driven freeze-out. The value of the
coupling that is required to obtain the measured dark
matter abundance is of order 10�6

�10�7 in that case.
We show several contours for ��/10�7 = 2, 3, 5, 7. The
smallness of the coupling implies that this production
mechanism is compatible with null results from direct
and indirect dark matter detection experiments, while
still providing an explanation of the abundance of dark
matter that is insensitive to the initial conditions.

The decay length c⌧ of the mediator, where ⌧ is its life-
time, is shown by the grey contour lines in Fig. 8. It is of

the order of a few cm to 1m within most of the parameter
space, going down to 1mm close to the boundary. For
the freeze-out computation, we limit ourselves to the pa-
rameter space where �m > mb, such that the two-body
decay q̃ ! �b is kinematically allowed. For even smaller
mass splitting, conversions proceed via scatterings, and
the mediator would be stable on detector time scales.

The primary signal of conversion-driven dark mat-
ter production with a colored mediator are searches for
heavy, (meta-)stable colored particles at the LHC. For
�m < mb, the colored mediator becomes detector sta-
ble as its decay is 4-body suppressed. We can directly
apply the limit from the 13TeV ATLAS search [48] de-
rived for an R-hadron containing a b-squark. It excludes
masses below 1250GeV. The resulting limit is shown in
Fig. 8 as a solid blue curve (and blue shaded exclusion
region). For larger �m the decay length is in the range
1mm ⇠ 1m such that a sizeable fraction of decays take
place inside the inner detector. To estimate the reach
of the same search for this case, we employ the reported
cross section upper limits for the muon-system-agnostic
analysis for a b-squark R-hadron. We rescale them by
the relative suppression of the cross section upper limits
towards small lifetimes reported in the similar ATLAS
analysis [49] where the case of a gluino R-hadron has
been considered. Note that this introduces a certain level
of approximation. A recasting of the search is, however,
beyond the scope of this work. We use the cross-section
predictions from [50]. The resulting limit is displayed
as the blue, dashed curve in Fig. 8. Furthermore, we
display the limit from the recasting of the CMS 13 TeV
R-hadron search [51] performed in [15] as the blue, dot-
dashed curve.

Being only sensitive to the fraction of R-hadrons
traversing a significant part of the detector, the sensitiv-
ity of these searches is exponentially suppressed for small
lifetimes. Dedicated analyses exploiting the displaced na-
ture of the decay are, hence, expected to greatly improve
the sensitivity to this scenario. While several such analy-
ses have been performed by the collaborations, their tar-
get model differs considerably from the one considered
here, significantly reducing their reach or raising ques-
tions about their applicability as pointed out in [52] (con-
tribution 7). For instance, the sensitivity of the displaced
jets search [53] considerably suffers from the imposed cut
on the invariant mass of the displaced tracks. While the
respective choice was optimized for the scenario consid-
ered in the search, it reduces the signal of the one consid-
ered here by around two orders of magnitude [52]. This
is due to its relatively small mass splittings �m of order
tens of GeV in our scenario, resulting in softer tracks.
The search has been targeted to mass splittings of the
order of hundreds of GeV.

Another example of a potentially sensitive search is
the one for disappearing tracks. The existing searches
are targeted to charginos whose long lifetime arises due
to a tiny mass splitting, O(100MeV), to the dark matter
particle. Accordingly, in the decay, an ultra-soft pion is
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Figure 1 – Ratio between decay rate and Hubble rate as a function of the inverse temperature.

the number density of the dark sector is then driven entirely by annihilations of heavier states
and not by dark matter annihilations. In this case the relic density becomes independent of
the coupling strength of dark matter. However, this conclusion is only true for couplings that
are still large enough to maintain relative chemical equilibrium.d For even smaller couplings
relative chemical equilibrium breaks down. In this case conversion processes are responsible for
the chemical decoupling of dark matter and hence set the relic density. This conversion-driven
freeze-out mechanism is phenomenologically distinct and opens up a new region in parameter
space where coannihilation would lead to under-abundant dark matter, if relative chemical
equilibrium would hold.

2.3 The “LLP miracle”

The departure from relative chemical equilibrium has an immediate consequence for the possible
decay length of the heavier states. As the decay contributes to the conversions, requiring their
rate to become ine�cient necessarily requires

�dec . H . (3)

In the radiation dominated Universe H =
p

g⇤/90⇡T 2
/MPl, where MPl ' 2.44⇥1018 GeV is the

reduced Planck mass. We can translates the inverse Hubble rate into a length. Using g⇤ = 100,
the inequality (3) then reads
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This is an important results which states that for particles in the GeV to TeV range a departure
from relative chemical equilibrium during freeze-out (T ' m�/30) implies macroscopic decay
length at the LHC – an intriguing coincidence that renders the LHC to be a powerful tool to
explore these scenarios. Figure 1 illustrates the prompt, meta-stable and detector-stable regime
in the plane spanned by the inverse temperature and �dec/H.

3 Realizations of conversion-driven freeze-out

In this section we discuss a realization of conversion-driven freeze-out within a simplified dark
matter model. We consider an extension of the standard model by a neutral Majorana fermion �

and a colored scalar particle q̃ that acts as a (t-channel) mediator of the dark matter interactions
with the standard model quarks q:

Lint = |Dµq̃|
2 + ��q̃ q̄

1� �5

2
�+ h.c. . (5)

d
Note that conversion rates are enhance compared to annihilations by a Boltzmann factor of order e

m�/T
.

⇒

2

�
/H

(1 TeV)/T

pr
om

pt
m

et
a-

sta
bl

e
de

te
ct

or
-st

ab
le

� ⇠ H

Figure 1 – Ratio between decay rate and Hubble rate as a function of the inverse temperature.

the number density of the dark sector is then driven entirely by annihilations of heavier states
and not by dark matter annihilations. In this case the relic density becomes independent of
the coupling strength of dark matter. However, this conclusion is only true for couplings that
are still large enough to maintain relative chemical equilibrium.d For even smaller couplings
relative chemical equilibrium breaks down. In this case conversion processes are responsible for
the chemical decoupling of dark matter and hence set the relic density. This conversion-driven
freeze-out mechanism is phenomenologically distinct and opens up a new region in parameter
space where coannihilation would lead to under-abundant dark matter, if relative chemical
equilibrium would hold.

2.3 The “LLP miracle”

The departure from relative chemical equilibrium has an immediate consequence for the possible
decay length of the heavier states. As the decay contributes to the conversions, requiring their
rate to become ine�cient necessarily requires
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In the radiation dominated Universe H =
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This is an important results which states that for particles in the GeV to TeV range a departure
from relative chemical equilibrium during freeze-out (T ' m�/30) implies macroscopic decay
length at the LHC – an intriguing coincidence that renders the LHC to be a powerful tool to
explore these scenarios. Figure 1 illustrates the prompt, meta-stable and detector-stable regime
in the plane spanned by the inverse temperature and �dec/H.

3 Realizations of conversion-driven freeze-out

In this section we discuss a realization of conversion-driven freeze-out within a simplified dark
matter model. We consider an extension of the standard model by a neutral Majorana fermion �

and a colored scalar particle q̃ that acts as a (t-channel) mediator of the dark matter interactions
with the standard model quarks q:
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FIG. 8: Cosmologically allowed parameter space (⌦h2 =
0.12) for conversion-driven freeze-out when taking bound
states with n  15 as well as Sommerfeld enhancement into
account. Green dashed lines show contours of the coupling ��

in units of 10�7, and grey lines of the mediator decay length.
In addition, LHC bounds from R-hadron searches as well as
disappearing track searches are shown, as well as the contours
within the coannihilation regime (see Fig. 7).

emitted facilitating the use of a disappearance condition.
In our scenario, the emitted b-jet is considerably harder
than in the targeted model. However, the search is esti-
mated to still provide sensitivity to the model considered
here, as shown in the approximate recasting of [54] per-
formed in [52]. In this recasting, the probability of the
R-hadron to cause a charged track was also taken into
account. We overlay the respective limit as the purple
dotted curve in Fig. 8.

We conclude that, after including the impact of bound
states, a wide part of the parameter space for conversion-
driven freeze-out is still viable, and provides a clear target
for long-lived particle searches at future LHC runs.

VI. CONCLUSION

In this work, we revisited the computation of the relic
density in the presence of bound-state effects during dark
matter freeze-out. With respect to previous work, we
improved the calculations in various aspects and demon-
strated the respective phenomenological implications on
the cosmologically viable parameter space in the coanni-
hilation and conversion-driven freeze-out scenario.

In the first part of this work, we reformulated the
Boltzmann equations including arbitrary excitations of
bound states and derived a general framework for incor-
porating their effects in terms of an effective annihilation
cross section. While a full treatment of these effects re-
quires the knowledge of all involved bound-state forma-
tion, decay, and transition rates, we introduced meaning-

ful limiting cases when assuming fully efficient or non-
efficient transitions. We provided simple analytical ex-
pressions for the effective cross section in these limits, as
well as a general result. Furthermore, we showed that for
an arbitrary set of bound states in ionization equilibrium,
the effective cross section is independent of bound-state
formation and transition rates, and only depends on a
weighted sum of bound state decay rates.

For the case of a colored coannihilator, we computed
the radiative bound-state formation rates for arbitrary
excitations with quantum numbers n, `, and estimate the
lowest order transition rates. Furthermore, we investi-
gated the impact of NLO corrections to bound state de-
cays. We further discuss the relevance of NLO effects on
bound-state formation and decay in App. B.

We then solved the coupled Boltzmann equation for
the mediator and the dark matter particle in a t-channel
model and assessed the impact of bound states for coanni-
hilations as well as conversion-driven freeze-out. On the
one hand, in ionization equilibrium, the effective media-
tor annihilation cross section is insensitive to the bound-
state formation but directly proportional to the bound
state decay rates. Including excited states increases the
effective cross section by about 20% in that case. On
the other hand, after the breakdown of ionization equi-
librium of the ground state, higher excitations become
increasingly important. At the same time, a large bound-
state formation rate extends the duration of ionization
equilibrium down to smaller temperatures. Neverthe-
less, we found that freeze-out significantly extends be-
yond the period of ionization equilibrium for small rela-
tive mass splittings between the mediator and dark mat-
ter, phenomenologically most relevant in the region of
high masses, m�

>
⇠ 2TeV. In this region of parameter

space, our fiducial approximation that neglects bound
state transitions is expected to underestimate the effects
of excited bound states, motivating further studies. In
addition, we demonstrated that NLO corrections to the
bound-state formation rate itself play only a moderate
role in the setup considered here.

Evaluating the cosmologically viable parameter space,
we found that the region for which conversion-driven
freeze-out is relevant extends significantly when including
bound-state effects, ranging up to the multi-TeV region.
In addition, our findings imply that significantly higher
dark matter masses are viable also within the coannihi-
lation region. This has immediate consequences for dark
matter searches. For instance, considering a mass split-
ting of 20 GeV and a coupling of ⇠ 0.169, as predicted in
the MSSM, the dark matter mass that matches the relic
density is shifted from around 900 GeV to 1.8 TeV by the
inclusion of the discussed effects. On the other hand,
when keeping the masses fixed at m� = 900 GeV and
�m = 20 GeV, the coupling would change from 0.169 to
around 5⇥10�7 as it lies in the conversion-driven freeze-
out regime.

Dark matter produced via conversion-driven freeze-out
is compatible with (in)direct detection limits due to a

Collider constraints

LHC – R-hadrons:  
ATLAS [1902.01636, 1808.04095 approximate reinterpretation] 
CMS [CMS-PAS-EXO-16-036, recasting from 1705.09292]
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FIG. 8: Cosmologically allowed parameter space (⌦h2 =
0.12) for conversion-driven freeze-out when taking bound
states with n  15 as well as Sommerfeld enhancement into
account. Green dashed lines show contours of the coupling ��

in units of 10�7, and grey lines of the mediator decay length.
In addition, LHC bounds from R-hadron searches as well as
disappearing track searches are shown, as well as the contours
within the coannihilation regime (see Fig. 7).

emitted facilitating the use of a disappearance condition.
In our scenario, the emitted b-jet is considerably harder
than in the targeted model. However, the search is esti-
mated to still provide sensitivity to the model considered
here, as shown in the approximate recasting of [54] per-
formed in [52]. In this recasting, the probability of the
R-hadron to cause a charged track was also taken into
account. We overlay the respective limit as the purple
dotted curve in Fig. 8.

We conclude that, after including the impact of bound
states, a wide part of the parameter space for conversion-
driven freeze-out is still viable, and provides a clear target
for long-lived particle searches at future LHC runs.

VI. CONCLUSION

In this work, we revisited the computation of the relic
density in the presence of bound-state effects during dark
matter freeze-out. With respect to previous work, we
improved the calculations in various aspects and demon-
strated the respective phenomenological implications on
the cosmologically viable parameter space in the coanni-
hilation and conversion-driven freeze-out scenario.

In the first part of this work, we reformulated the
Boltzmann equations including arbitrary excitations of
bound states and derived a general framework for incor-
porating their effects in terms of an effective annihilation
cross section. While a full treatment of these effects re-
quires the knowledge of all involved bound-state forma-
tion, decay, and transition rates, we introduced meaning-

ful limiting cases when assuming fully efficient or non-
efficient transitions. We provided simple analytical ex-
pressions for the effective cross section in these limits, as
well as a general result. Furthermore, we showed that for
an arbitrary set of bound states in ionization equilibrium,
the effective cross section is independent of bound-state
formation and transition rates, and only depends on a
weighted sum of bound state decay rates.

For the case of a colored coannihilator, we computed
the radiative bound-state formation rates for arbitrary
excitations with quantum numbers n, `, and estimate the
lowest order transition rates. Furthermore, we investi-
gated the impact of NLO corrections to bound state de-
cays. We further discuss the relevance of NLO effects on
bound-state formation and decay in App. B.

We then solved the coupled Boltzmann equation for
the mediator and the dark matter particle in a t-channel
model and assessed the impact of bound states for coanni-
hilations as well as conversion-driven freeze-out. On the
one hand, in ionization equilibrium, the effective media-
tor annihilation cross section is insensitive to the bound-
state formation but directly proportional to the bound
state decay rates. Including excited states increases the
effective cross section by about 20% in that case. On
the other hand, after the breakdown of ionization equi-
librium of the ground state, higher excitations become
increasingly important. At the same time, a large bound-
state formation rate extends the duration of ionization
equilibrium down to smaller temperatures. Neverthe-
less, we found that freeze-out significantly extends be-
yond the period of ionization equilibrium for small rela-
tive mass splittings between the mediator and dark mat-
ter, phenomenologically most relevant in the region of
high masses, m�

>
⇠ 2TeV. In this region of parameter

space, our fiducial approximation that neglects bound
state transitions is expected to underestimate the effects
of excited bound states, motivating further studies. In
addition, we demonstrated that NLO corrections to the
bound-state formation rate itself play only a moderate
role in the setup considered here.

Evaluating the cosmologically viable parameter space,
we found that the region for which conversion-driven
freeze-out is relevant extends significantly when including
bound-state effects, ranging up to the multi-TeV region.
In addition, our findings imply that significantly higher
dark matter masses are viable also within the coannihi-
lation region. This has immediate consequences for dark
matter searches. For instance, considering a mass split-
ting of 20 GeV and a coupling of ⇠ 0.169, as predicted in
the MSSM, the dark matter mass that matches the relic
density is shifted from around 900 GeV to 1.8 TeV by the
inclusion of the discussed effects. On the other hand,
when keeping the masses fixed at m� = 900 GeV and
�m = 20 GeV, the coupling would change from 0.169 to
around 5⇥10�7 as it lies in the conversion-driven freeze-
out regime.

Dark matter produced via conversion-driven freeze-out
is compatible with (in)direct detection limits due to a

Collider constraints
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FIG. 8: Cosmologically allowed parameter space (⌦h2 =
0.12) for conversion-driven freeze-out when taking bound
states with n  15 as well as Sommerfeld enhancement into
account. Green dashed lines show contours of the coupling ��

in units of 10�7, and grey lines of the mediator decay length.
In addition, LHC bounds from R-hadron searches as well as
disappearing track searches are shown, as well as the contours
within the coannihilation regime (see Fig. 7).

emitted facilitating the use of a disappearance condition.
In our scenario, the emitted b-jet is considerably harder
than in the targeted model. However, the search is esti-
mated to still provide sensitivity to the model considered
here, as shown in the approximate recasting of [54] per-
formed in [52]. In this recasting, the probability of the
R-hadron to cause a charged track was also taken into
account. We overlay the respective limit as the purple
dotted curve in Fig. 8.

We conclude that, after including the impact of bound
states, a wide part of the parameter space for conversion-
driven freeze-out is still viable, and provides a clear target
for long-lived particle searches at future LHC runs.

VI. CONCLUSION

In this work, we revisited the computation of the relic
density in the presence of bound-state effects during dark
matter freeze-out. With respect to previous work, we
improved the calculations in various aspects and demon-
strated the respective phenomenological implications on
the cosmologically viable parameter space in the coanni-
hilation and conversion-driven freeze-out scenario.

In the first part of this work, we reformulated the
Boltzmann equations including arbitrary excitations of
bound states and derived a general framework for incor-
porating their effects in terms of an effective annihilation
cross section. While a full treatment of these effects re-
quires the knowledge of all involved bound-state forma-
tion, decay, and transition rates, we introduced meaning-

ful limiting cases when assuming fully efficient or non-
efficient transitions. We provided simple analytical ex-
pressions for the effective cross section in these limits, as
well as a general result. Furthermore, we showed that for
an arbitrary set of bound states in ionization equilibrium,
the effective cross section is independent of bound-state
formation and transition rates, and only depends on a
weighted sum of bound state decay rates.

For the case of a colored coannihilator, we computed
the radiative bound-state formation rates for arbitrary
excitations with quantum numbers n, `, and estimate the
lowest order transition rates. Furthermore, we investi-
gated the impact of NLO corrections to bound state de-
cays. We further discuss the relevance of NLO effects on
bound-state formation and decay in App. B.

We then solved the coupled Boltzmann equation for
the mediator and the dark matter particle in a t-channel
model and assessed the impact of bound states for coanni-
hilations as well as conversion-driven freeze-out. On the
one hand, in ionization equilibrium, the effective media-
tor annihilation cross section is insensitive to the bound-
state formation but directly proportional to the bound
state decay rates. Including excited states increases the
effective cross section by about 20% in that case. On
the other hand, after the breakdown of ionization equi-
librium of the ground state, higher excitations become
increasingly important. At the same time, a large bound-
state formation rate extends the duration of ionization
equilibrium down to smaller temperatures. Neverthe-
less, we found that freeze-out significantly extends be-
yond the period of ionization equilibrium for small rela-
tive mass splittings between the mediator and dark mat-
ter, phenomenologically most relevant in the region of
high masses, m�

>
⇠ 2TeV. In this region of parameter

space, our fiducial approximation that neglects bound
state transitions is expected to underestimate the effects
of excited bound states, motivating further studies. In
addition, we demonstrated that NLO corrections to the
bound-state formation rate itself play only a moderate
role in the setup considered here.

Evaluating the cosmologically viable parameter space,
we found that the region for which conversion-driven
freeze-out is relevant extends significantly when including
bound-state effects, ranging up to the multi-TeV region.
In addition, our findings imply that significantly higher
dark matter masses are viable also within the coannihi-
lation region. This has immediate consequences for dark
matter searches. For instance, considering a mass split-
ting of 20 GeV and a coupling of ⇠ 0.169, as predicted in
the MSSM, the dark matter mass that matches the relic
density is shifted from around 900 GeV to 1.8 TeV by the
inclusion of the discussed effects. On the other hand,
when keeping the masses fixed at m� = 900 GeV and
�m = 20 GeV, the coupling would change from 0.169 to
around 5⇥10�7 as it lies in the conversion-driven freeze-
out regime.

Dark matter produced via conversion-driven freeze-out
is compatible with (in)direct detection limits due to a
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FIG. 8: Cosmologically allowed parameter space (⌦h2 =
0.12) for conversion-driven freeze-out when taking bound
states with n  15 as well as Sommerfeld enhancement into
account. Green dashed lines show contours of the coupling ��

in units of 10�7, and grey lines of the mediator decay length.
In addition, LHC bounds from R-hadron searches as well as
disappearing track searches are shown, as well as the contours
within the coannihilation regime (see Fig. 7).

emitted facilitating the use of a disappearance condition.
In our scenario, the emitted b-jet is considerably harder
than in the targeted model. However, the search is esti-
mated to still provide sensitivity to the model considered
here, as shown in the approximate recasting of [54] per-
formed in [52]. In this recasting, the probability of the
R-hadron to cause a charged track was also taken into
account. We overlay the respective limit as the purple
dotted curve in Fig. 8.

We conclude that, after including the impact of bound
states, a wide part of the parameter space for conversion-
driven freeze-out is still viable, and provides a clear target
for long-lived particle searches at future LHC runs.

VI. CONCLUSION

In this work, we revisited the computation of the relic
density in the presence of bound-state effects during dark
matter freeze-out. With respect to previous work, we
improved the calculations in various aspects and demon-
strated the respective phenomenological implications on
the cosmologically viable parameter space in the coanni-
hilation and conversion-driven freeze-out scenario.

In the first part of this work, we reformulated the
Boltzmann equations including arbitrary excitations of
bound states and derived a general framework for incor-
porating their effects in terms of an effective annihilation
cross section. While a full treatment of these effects re-
quires the knowledge of all involved bound-state forma-
tion, decay, and transition rates, we introduced meaning-

ful limiting cases when assuming fully efficient or non-
efficient transitions. We provided simple analytical ex-
pressions for the effective cross section in these limits, as
well as a general result. Furthermore, we showed that for
an arbitrary set of bound states in ionization equilibrium,
the effective cross section is independent of bound-state
formation and transition rates, and only depends on a
weighted sum of bound state decay rates.

For the case of a colored coannihilator, we computed
the radiative bound-state formation rates for arbitrary
excitations with quantum numbers n, `, and estimate the
lowest order transition rates. Furthermore, we investi-
gated the impact of NLO corrections to bound state de-
cays. We further discuss the relevance of NLO effects on
bound-state formation and decay in App. B.

We then solved the coupled Boltzmann equation for
the mediator and the dark matter particle in a t-channel
model and assessed the impact of bound states for coanni-
hilations as well as conversion-driven freeze-out. On the
one hand, in ionization equilibrium, the effective media-
tor annihilation cross section is insensitive to the bound-
state formation but directly proportional to the bound
state decay rates. Including excited states increases the
effective cross section by about 20% in that case. On
the other hand, after the breakdown of ionization equi-
librium of the ground state, higher excitations become
increasingly important. At the same time, a large bound-
state formation rate extends the duration of ionization
equilibrium down to smaller temperatures. Neverthe-
less, we found that freeze-out significantly extends be-
yond the period of ionization equilibrium for small rela-
tive mass splittings between the mediator and dark mat-
ter, phenomenologically most relevant in the region of
high masses, m�

>
⇠ 2TeV. In this region of parameter

space, our fiducial approximation that neglects bound
state transitions is expected to underestimate the effects
of excited bound states, motivating further studies. In
addition, we demonstrated that NLO corrections to the
bound-state formation rate itself play only a moderate
role in the setup considered here.

Evaluating the cosmologically viable parameter space,
we found that the region for which conversion-driven
freeze-out is relevant extends significantly when including
bound-state effects, ranging up to the multi-TeV region.
In addition, our findings imply that significantly higher
dark matter masses are viable also within the coannihi-
lation region. This has immediate consequences for dark
matter searches. For instance, considering a mass split-
ting of 20 GeV and a coupling of ⇠ 0.169, as predicted in
the MSSM, the dark matter mass that matches the relic
density is shifted from around 900 GeV to 1.8 TeV by the
inclusion of the discussed effects. On the other hand,
when keeping the masses fixed at m� = 900 GeV and
�m = 20 GeV, the coupling would change from 0.169 to
around 5⇥10�7 as it lies in the conversion-driven freeze-
out regime.

Dark matter produced via conversion-driven freeze-out
is compatible with (in)direct detection limits due to a
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▪ Displaced jets+MET suffers from minv-cut!Figure 3: The invariant mass distribution for candidate displaced vertices. The blue histogram shows
the distribution for a gluino simplified model with a large mass gap: (mg̃, m�̃

0
1
) = (625 GeV, 100 GeV).

The orange histogram shows the distribution for the model considered here with masses (m
b̃
, m�) =

(625 GeV, 100 GeV), while the green histogram shows the same distribution but for the compressed
scenario: (m

b̃
, m�) = (625 GeV, 600 GeV).

sections matching next-to-leading order calculations with the resummation of the next-to-next-
to-leading threshold logarithms, as obtained from NNLL-FAST [161, 162].

As expected, most of the events fail the mDV cut, suppressing the signal yield. The
resulting 95% CL exclusion is illustrated by the solid purple curve in Fig. 1 that shows that
only points with very large cross sections (small eb masses) and a mass gap larger than 15 GeV
are excluded. Since the main loss in sensitivity is due to the invariant mass requirement for the
displaced vertices, we try to estimate what could be the reach resulting from relaxing this cut.
In order to achieve this, we assume that the SM background remains unchanged and the DV
reconstruction efficiency for vertices with mDV < 10 GeV is the same as the one for mDV =

15 GeV. Although these certainly are optimistic assumptions, it allows us to use the efficiencies
provided by the ATLAS collaboration when smaller mass cuts are used. The result is shown
by the purple dashed line in Fig. 1, the excluded region being now significantly enhanced,
extending up to 1 TeV bottom partner masses for small lifetimes (large mass splittings within
the considered scenario).

Once again we stress that this is an optimistic and probably unrealistic projection. Nev-
ertheless, it illustrates the impact of the invariant mass cut on the sensitivity to models with
small mass gaps and reveals the potential gain of relaxing this cut. To achieve this, the back-
ground might be reduced by other means, e.g. by requiring a larger displacement. In fact, Fig. 1
shows a significant region where the displaced jets without a mDV cut would outperform the
disappearing track search (e.g. for c⌧ > 2.5 cm).

3.5 Delayed jets
Another option for distinguishing the long lifetime of some particles is to measure the timing
information of their decay products, and search for delays with respect to the collision time.
This method was exploited in a recent CMS analysis [147], where timing capabilities of the
CMS electromagnetic calorimeter (ECAL) were used to identify non-prompt or “delayed” jets.
The analysis is sensitive to long-lived particles decaying within the ECAL barrel volume ex-
tending up to 1.79 m and covering |⌘| < 1.48. The analysis uses only calorimetric information
to reconstruct jets and imposes a set of quality criteria on the ECAL cells and energy fractions.
Jet timing is calculated from the median of the times of ECAL cells associated with the jet,
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FIG. 1. Constraints on the t-channel DM models investigated that emerge from cosmological and astrophysical observables, as
well as from the measured Z-boson visible decay width. The coloured hypersurfaces displayed in the different (MX ,MY /MX�1)
planes correspond to scenarios that satisfy ⌦h2 ' 0.12 for a value of the coupling � reflected by the grey-scale colour map. The
left (right) panels correspond to models with self-conjugate (complex) DM, and we consider a scalar (top row), fermion (central
row), and vector (bottom row) DM candidate. The hatched regions denote exclusions from gamma-ray searches (‘ID gamma
rays’), searches in cosmic-ray antiprotons (‘ID anti-protons’), DM direct detection via spin-independent and spin-dependent
interactions (‘DD SI’ and ‘DD SD’, respectively), and Z-boson visible decays (‘Z decay’). For details we refer to sections II.2.5,
II.2.4 and to the end of section II.2.6.
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FIG. 8: Cosmologically allowed parameter space (⌦h2 =
0.12) for conversion-driven freeze-out when taking bound
states with n  15 as well as Sommerfeld enhancement into
account. Green dashed lines show contours of the coupling ��

in units of 10�7, and grey lines of the mediator decay length.
In addition, LHC bounds from R-hadron searches as well as
disappearing track searches are shown, as well as the contours
within the coannihilation regime (see Fig. 7).

emitted facilitating the use of a disappearance condition.
In our scenario, the emitted b-jet is considerably harder
than in the targeted model. However, the search is esti-
mated to still provide sensitivity to the model considered
here, as shown in the approximate recasting of [54] per-
formed in [52]. In this recasting, the probability of the
R-hadron to cause a charged track was also taken into
account. We overlay the respective limit as the purple
dotted curve in Fig. 8.

We conclude that, after including the impact of bound
states, a wide part of the parameter space for conversion-
driven freeze-out is still viable, and provides a clear target
for long-lived particle searches at future LHC runs.

VI. CONCLUSION

In this work, we revisited the computation of the relic
density in the presence of bound-state effects during dark
matter freeze-out. With respect to previous work, we
improved the calculations in various aspects and demon-
strated the respective phenomenological implications on
the cosmologically viable parameter space in the coanni-
hilation and conversion-driven freeze-out scenario.

In the first part of this work, we reformulated the
Boltzmann equations including arbitrary excitations of
bound states and derived a general framework for incor-
porating their effects in terms of an effective annihilation
cross section. While a full treatment of these effects re-
quires the knowledge of all involved bound-state forma-
tion, decay, and transition rates, we introduced meaning-

ful limiting cases when assuming fully efficient or non-
efficient transitions. We provided simple analytical ex-
pressions for the effective cross section in these limits, as
well as a general result. Furthermore, we showed that for
an arbitrary set of bound states in ionization equilibrium,
the effective cross section is independent of bound-state
formation and transition rates, and only depends on a
weighted sum of bound state decay rates.

For the case of a colored coannihilator, we computed
the radiative bound-state formation rates for arbitrary
excitations with quantum numbers n, `, and estimate the
lowest order transition rates. Furthermore, we investi-
gated the impact of NLO corrections to bound state de-
cays. We further discuss the relevance of NLO effects on
bound-state formation and decay in App. B.

We then solved the coupled Boltzmann equation for
the mediator and the dark matter particle in a t-channel
model and assessed the impact of bound states for coanni-
hilations as well as conversion-driven freeze-out. On the
one hand, in ionization equilibrium, the effective media-
tor annihilation cross section is insensitive to the bound-
state formation but directly proportional to the bound
state decay rates. Including excited states increases the
effective cross section by about 20% in that case. On
the other hand, after the breakdown of ionization equi-
librium of the ground state, higher excitations become
increasingly important. At the same time, a large bound-
state formation rate extends the duration of ionization
equilibrium down to smaller temperatures. Neverthe-
less, we found that freeze-out significantly extends be-
yond the period of ionization equilibrium for small rela-
tive mass splittings between the mediator and dark mat-
ter, phenomenologically most relevant in the region of
high masses, m�

>
⇠ 2TeV. In this region of parameter

space, our fiducial approximation that neglects bound
state transitions is expected to underestimate the effects
of excited bound states, motivating further studies. In
addition, we demonstrated that NLO corrections to the
bound-state formation rate itself play only a moderate
role in the setup considered here.

Evaluating the cosmologically viable parameter space,
we found that the region for which conversion-driven
freeze-out is relevant extends significantly when including
bound-state effects, ranging up to the multi-TeV region.
In addition, our findings imply that significantly higher
dark matter masses are viable also within the coannihi-
lation region. This has immediate consequences for dark
matter searches. For instance, considering a mass split-
ting of 20 GeV and a coupling of ⇠ 0.169, as predicted in
the MSSM, the dark matter mass that matches the relic
density is shifted from around 900 GeV to 1.8 TeV by the
inclusion of the discussed effects. On the other hand,
when keeping the masses fixed at m� = 900 GeV and
�m = 20 GeV, the coupling would change from 0.169 to
around 5⇥10�7 as it lies in the conversion-driven freeze-
out regime.

Dark matter produced via conversion-driven freeze-out
is compatible with (in)direct detection limits due to a
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P
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R
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outthatquantitativelybothareimportantfordetermin-
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scatteringprocesses,weshowthefreeze-outdensitythat

wouldbeobtainedwhenonlytakingdecaysintoaccount

bythegraydashedlineinFig.4.Furthermore,thegray

shadedareaindicatesthedependenceoninitialcondi-

tionsthatwouldresultneglectingscatterings.Wefind

thatscatteringprocesses,thatareactiveatsmallx,are

responsibleforwipingoutthedependenceontheinitial

abundanceinthefullsolutionofthecoupledBoltzmann

equations.
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inthem�-mebplaneistheoneforacoupling��thatjust

providesCE(butisstillsmallenoughsothat⇥⇥-and

⇥�b-annihilationisnegligible).Thecurveforwhichthis
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valueof��rangesfrom10�7to10�6(fromsmalltolarge

m�).Thesevaluesliefarbeyondthesensitivityofdirect

orindirectdetectionexperiments.
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Figure38:Lowerexclusionlimitsinthem�-MV
planeat95%

CLfortheATLAS(bluelines)andCMS(red

lines)mono-jetsearches.Thelimitsforthesimplifiedmodel(solidlines),fortheEFT(dashedlines)andfor

theEFTapplyingtheQ-truncation(dottedlines)areshown.Fourslicesoftheparameterspace:
�g�gq=1,

�V
=0.01MV

(upperleftpanel),
�g�gq=1,�V

=0.5MV
(upperrightpanel),

�g�gq=0.2,�V
=0.01MV

(lowerleftpanel)and
�g�gq=0.2,�V=0.5MV

(lowerrightpanel)aredisplayed.Theblueshadedregioninthe

leftpanelsrepresenttheparametersspacenotallowingaconsistentsolutionforthemediatorwidthasafunction

ofMV,m�,
�g�gq.
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Results from mono-jet searches at 8 TeV LHC

EFT Limit

▪ Re-interpret LHC Run I mono-jet + MET searches

   [ATLAS:1502.01518, CMS: 1408.3583]

▪ Simulation: FeyRules/MadGraph/Phythia/Delphes

Simplified Model 

Limit
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Figure2.Leftpanel:Themonojetprocessfromaqq̄initialstateintheEFTframework.Thecon-

tactinteractionisrepresentedbytheshadedblob.Detailsoftheparticlemediatingtheinteraction

donothavetobespecified.Rightpanel:ThisshowsaUVresolutionofthecontactinteractionfor

an(axial)-vectormediatorZ
0
,exchangedinthes-channel.Themomentumtransferthroughthe

s-channelisdenotedbyQ.

exchangedinthes-channel.Weremainagnostictothepreciseoriginofthevectormediator

anditscouplingwithdarkmatterandquarks.Oneexampleofsuchamediatorisa(axial)-

vectorZ
0
,amassivespin-onevectorbosonfromabrokenU(1)

0gaugesymmetry[40,41].

Asecondexampleisacompositevectormediator,similartothe⇤inQCD[42].Ineither

case,inadditiontotheusualtermsintheStandardModelLagrangian,theLagrangian

withgeneralquarkinteractiontermsis

L=�
1
4
Z
�
µ�Z

0µ�+
1
2
m
2
medZ

0µZ
0
µ
+i⇥̄�

µ⌅µ⇥�mDM⇥̄⇥

+Z
0
µ⇥̄�

µ(g⇥V�g⇥A�
5)⇥+Z

0
µ

�
q

q̄�
µ(gqV�gqA�

5)q.

(3.1)

Heremmedisthe(axial)-vectormasstermandgV
andgAarethevectorandaxialcouplings

respectively.Thedarkmatterparticle⇥isaDiracfermionwithmassmDM,neutralunder

theStandardModelgaugegroups.Thesum
extendsoverallquarksandforsimplicity,

weassumethatthecouplingsgqV
andgqA

arethesameforallquarks.Whileingeneral,

aZ
0from

abrokenU(1)
0willalsohavecouplingstoleptonsandgaugebosons,wedo

notconsiderthemhereastheyarenotrelevantforthemonojetsearch.
1Thissimplified

modelissimilar(albeitsimpler)tothemodeldiscussedin[31].Simplifiedmodelsofvector

mediatorshavealsobeendiscussedin[4,18,31,43,44].

WhiletheaboveLagrangianallowsforbothvectorandaxial-vectorinteractions,the

phenomenologyandlimitsfromthemonojetsearcharesimilarinbothcases.Therefore

forthepurposesofclarity,wefocusonone:theaxial-vectorinteraction.Intheremainder

ofthisarticle,wesetg⇥V
=gqV

=0andredefineg⇥⇥g⇥A
andgq⇥ggA.Theaxial-vector

interactionhastwoadvantages.Firstly,thisinteractionisnon-zeroforMajoranadark

matter(thenormalisationofourresultswouldchangebyafactoroffourinthiscase),

unlikethevectorinteraction,whichvanishesforMajoranadarkmatter.Secondly,the

1WeassumethatthechargesarechosensotheU(1)
0gaugesymmetryisanomalyfree.Thismayrequire

additionalparticles.–5–
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Dijet resonance searches 
for bound state production

with                .mB ' 2mq̃

independent of lifetime 
and      .�m



▪ Dark matter elusive: systematically explore mechanisms of
   DM genesis 

▪ Consider minimal extensions to SM with large hierarchy
    in couplings

▪ Prolonged freeze-out dynamics: 
   ⇒ effects of excited bound states highly relevant

▪ Non-abelian theory: ‘eternal’ annihilation

▪ superWIMP scenario: Relic density does depend on decay rate

▪ Conversion-driven freeze-out: parameter space largely enhanced

▪ Interesting prospects for long-lived particle searches

▪ Open problem: Unitarization of BSF cross section

Summary
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