Bound state effects in dark matter genesis: pushing the boundaries of higher excitations

based on 2112.01499 and 2308.01336 in collaboration with T. Binder, M. Garny, S. Lederer, K. Urban

Jan Heisig (RWTH/UVA)

IFJ Seminar, Kraków, Poland October 19, 2023

Outline

- Introduction to particle dark matter
 - Effects of (excited) bound state
- Implications for t-channel mediator models
 - Implications for LHC searches

The phenomenon of Dark Matter

- More matter: gravitational effect on dynamics of visible matter
- Present on very different length scales

The phenomenon of Dark Matter

More matter: gravitational effect on dynamics of visible matter

Particle Dark Matter χ

Explain appearance on all scales: Most plausible \rightarrow new particle

Particle dark matter: a thermal relic

- Relic from thermal abundance
- Consider cosmological history of Universe:

Particle physics +cosmology: Extrapolate to early hot Universe ⇒ Boltzmann Eqs.

Expansion with Hubble rate H

Particle dark matter: a thermal relic

Particle dark matter: a thermal relic

- Relic from thermal abundance
- Consider cosmological history of Universe:

Particle physics +cosmology: Extrapolate to early hot Universe ⇒ Boltzmann Eqs.

Expansion with Hubble rate H

[Zel'dovich, Okun, Pikel'ner 1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

$$E_{\chi}\left(\partial_t - Hp\,\partial_p\right)f_{\chi}(p,t) = C\left[f_{\chi}\right]$$

Relativistic Liouville operator for homogeneous, isotropic Universe

Collision operator

Cosmology

Particle Physics

 $H \gtrsim \Gamma$

[Zel'dovich, Okun, Pikel'ner 1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

[Zel'dovich, Okun, Pikel'ner 1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

[Zel'dovich, Okun, Pikel'ner 1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

Thermal equilibrium:

 $\Gamma_{\rm dec} \gg H$

$$\Gamma_{\rm ann} = n_{\chi} \langle \sigma v \rangle_{\rm ann} \gg H \quad \text{and/or}$$

Jan Heisig

[Zel'dovich, Okun, Pikel'ner 1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

[Zel'dovich, Okun, Pikel'ner 1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

[Zel'dovich, Okun, Pikel'ner 1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

 $(\Omega h^2)_{\rm Planck} \simeq 0.12$

[Zel'dovich, Okun, Pikel'ner 1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

WIMP paradigm attractive

- Works with simple/natural models ("WIMP miracle")
- Independent of largely unconstrained/unknown physics of the very early universe (inflation/reheating)
- Naturally provides perfectly cold dark matter (CDM)
- Testable at indirect detection, direct detection and collider experiments

WIMP Dark Matter: searches

Indirect detection

SM X SM 10^{-23} 10^{-24} AMS-02 $[cm^3/s]$ $\langle \sigma v \rangle = 3 \times 10^{-26} \, \mathrm{cm}^3 / \mathrm{s}$ $\langle \sigma v \rangle$ 10^{-26} CR $b\bar{b}$ dSphs 10^{-27} 10^{4} 10^{3} $m_{\rm DM}$ [GeV] [Cuoco, JH, Korsmeier, Krämer 2017] Direct production

Direct detection

$$s_{M} \longleftrightarrow X_{1}$$

Large hierarchy of couplings:

 $\lambda_{\mathrm{strong}} \gg \lambda_{\mathrm{feeble}}$

- Interesting for the subject for two reasons:
 - (i) 'strong' coupling: significant bound state effects
 - (ii) very weak ('feeble') coupling: suppresses scattering and decay rates
 - \Rightarrow typically prolonged freeze-out process

Large hierarchy of couplings:

 $\lambda_{\mathrm{strong}} \gg \lambda_{\mathrm{feeble}}$

- Interesting for the subject for two reasons:
 - (i) 'strong' coupling: significant bound state effects
 - (ii) very weak ('feeble') coupling: suppresses scattering and decay rates
 - \Rightarrow typically prolonged freeze-out process
 - \Rightarrow bound state at late times (low T): excitations highly relevant

Effects of (excited) bound state

Non-relativistic effects

I. Sommerfeld effect:

[see e.g. Hisano, Matsumoto, Nojiri hep-ph/0307216; Hisano, Matsumoto, Nojiri, Saito hep-ph/0412403; …]

Non-relativistic effects

[see e.g. K. Petraki, M. Postma, M. Wiechers 1505.00109; S.P. Liew, F. Luo 1611.08133; J. Harz, K. Petraki 1805.01200; A. Mitridate, M. Redi, J. Smirnov, A. Strumia 1702.01141; T. Binder, B. Blobel, J. Harz, and K. Mukaida 2002.07145; ...]

Jan Heisig

Non-relativistic effects

[see e.g. K. Petraki, M. Postma, M. Wiechers 1505.00109; S.P. Liew, F. Luo 1611.08133; J. Harz, K. Petraki 1805.01200; A. Mitridate, M. Redi, J. Smirnov, A. Strumia 1702.01141; T. Binder, B. Blobel, J. Harz, and K. Mukaida 2002.07145; ...]

Jan Heisig

2. Bound state formation:

[Harz, Petraki]

2. Bound state formation:

 Force carrier = vector (gauge field): bound state formation XS ~ dipole transition:

[Harz, Petraki]

2. Bound state formation:

[Harz, Petraki]

 Force carrier = vector (gauge field): bound state formation XS ~ dipole transition:

$$(\sigma v)_{n\ell} \propto |\langle \psi_{n\ell} | \mathbf{r} | \psi_{\mathbf{p}} \rangle|^2$$

$$g \, \mathbf{r} \cdot \mathbf{E} \stackrel{\text{[(Color-)electric}}{\underset{\text{(in pNRQCD),}}{\text{see e.g. Yao+ 2019]}}}$$

• Force carrier massless (unbroken gauge theory): Coulomb limit: $V_{[R]}(r) = -\frac{\alpha_{[R]}^{\text{eff}}}{r}$ in unconfined phase

2. Bound state formation:

[Harz, Petraki]

 Force carrier = vector (gauge field): bound state formation XS ~ dipole transition:

$$(\sigma v)_{n\ell} \propto |\langle \psi_{n\ell} | \mathbf{r} | \psi_{\mathbf{p}} \rangle|^2$$

$$g \, \mathbf{r} \cdot \mathbf{E} \stackrel{\text{[(Color-)electric}}{\underset{\text{(in pNRQCD), see e.g. Yao+ 2019]}}{g \, \mathbf{r} \cdot \mathbf{E}}$$

Bound state formation cross section

Bound state formation cross section

Partial-wave unitarity violating?

[Binder, Garny, JH, Lederer, Urban 2308.01336]

- Derived recursion formulas for highly efficient and stable computation of (σv)_{nℓ} up to n = 1000, ℓ ≤ n − 1 (~million states)
- Impose partial-wave unitarity: [Griest, Kamionkowski 1990]

$$\begin{aligned} (\sigma v)^{\ell'} &= \sum_{n,\ell} (\sigma v)_{n\ell}^{\ell'} \\ &\leq \frac{\pi (2\ell'+1)}{\mu^2 v} \end{aligned}$$

[see also Harling, Petraki 2014; Baldes, Petraki 2017; Smirnov, Beacom 2019; Bottaro, Redigolo 2023]

Partial-wave unitarity violating?

[Binder, Garny, JH, Lederer, Urban 2308.01336]

- Derived recursion formulas for highly efficient and stable computation of $(\sigma v)_{n\ell}$ up to $n = 1000, \ \ell \le n - 1$ (~million states)
- Impose partial-wave unitari [Griest, Kamionkowski 19

$$\begin{aligned} (\sigma v)^{\ell'} &= \sum_{n,\ell} (\sigma v)_{n\ell}^{\ell'} \\ &\leq \frac{\pi (2\ell'+1)}{\mu^2 v} \end{aligned}$$

[see also Harling, Petraki 2014; Baldes, Petraki 2017; Smirnov, Beacom 2019; Bottaro, Redigolo 2023]

Decay

Boltzmann equations including excitations [Garny, JH 2112.01499]

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Mard process+Sommerfeld)} \\ \text{Mard process+Sommerfeld)} \\ \hline \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Bound state} \\ \text{formation} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \frac{d}{d} \\ \frac{d}$$

Jan Heisig

Effective annihilation cross section [Binder, Garny, JH, Lederer, Urban 2308.01336]

- Steepening of slope w.r.t. Sommerfeld only $\gamma=0.5$
- Note: no unitarity violation within unconfined phase
- No bound-to-bound transition in 'dark QCD' because no 1→1 transitions mediated by a gluon (8)

$$\langle \sigma v \rangle_{
m eff} \propto x^{\gamma}$$

Implications for t-channel mediator models

superWIMP scenario [Covi et al. 1999; Feng et al. 2003]

- Coupling $\lambda_{\chi} \sim 10^{-16} 10^{-10}$, dark matter thermally decoupled
- Produced in late decays of frozen out \tilde{q}

 \Rightarrow Relic density independent of λ_{χ}

superWIMP scenario [Covi et al. 1999; Feng et al. 2003]

- Coupling $\lambda_{\chi} \sim 10^{-16} 10^{-10}$, dark matter thermally decoupled
- \blacksquare Produced in late decays of frozen out \tilde{q}

 \Rightarrow Relic density independent of λ_{χ}

Effective annihilation cross section [Binder, Garny, JH, Lederer, Urban 2308.01336]

- \tilde{q} also electrically charged: dipole transitions $\mathcal{B}_{nl} \leftrightarrow \mathcal{B}_{n'l'}$ via photons \Rightarrow High impact on slope, super-critical (even w/o running)
- No unitarity-violating XS involved in unconfined phase, i.e. $T>\Lambda_{\rm QCD}$

Impact on the relic abundance [Binder, Garny, JH, Lederer, Urban 2308.01336]

- Excited bound states highly relevant
- No freeze-out before decay ($T_{\text{decay}} > 1 \text{GeV}$)
- Order-of-magnitude effect on relic density

Impact on the relic abundance [Binder, Garny, JH, Lederer, Urban 2308.01336]

Impact on the relic abundance [Binder, Garny, JH, Lederer, Urban 2308.01336]

Conversion-driven freeze-out

[Garny, JH, Lülf, Vogl 2017; D'Agnolo, Pappadopulo, Ruderman 2017]

- Coupling $\lambda_{\chi} \sim 10^{-6}$ just large enough to thermalize dark matter
- Conversions on the edge of being efficient $\Gamma \sim H$, initiate chemical decoupling \Rightarrow prolonged freeze-out process

Jan Heisig

Large mass splittings $\Delta m = m_{\tilde{q}} - m_{\chi}$ require large λ_{χ}

Smaller mass splittings $\Delta m = m_{\tilde{q}} - m_{\chi}$ require much smaller λ_{χ} : sudden drop in the coupling!

Boundary between WIMP and conversion-driven region at characteristic $\Delta m = m_{\tilde{q}} - m_{\chi}$

Implications for LHC searches

Feeble couplings: Long-lived particles at LHC

Lifetime in conversion scenario

Conversion rate on the edge of being efficient:

 $\Gamma_{\rm conv} \sim H$

$\Rightarrow \Gamma_{\rm dec} \lesssim H$

$$c\tau \gtrsim H^{-1} \simeq 1.5 \,\mathrm{cm} \left(\frac{(100 \,\mathrm{GeV})^2}{T^2} \right)$$

 $T \lesssim (10 - 100) \, \text{GeV}$ $\Rightarrow \text{Long-lived particles (LLPs) at LHC!}$

Collider constraints

Relevance for current searches

Jan Heisig

Relevance for current searches

Collider constraints

Summary

- Dark matter elusive: systematically explore mechanisms of DM genesis
- Consider minimal extensions to SM with large hierarchy in couplings $\lambda_{strong} \gg \lambda_{feeble}$
- Prolonged freeze-out dynamics:
 ⇒ effects of excited bound states highly relevant
- Non-abelian theory: 'eternal' annihilation
- superWIMP scenario: Relic density does depend on decay rate
- Conversion-driven freeze-out: parameter space largely enhanced
- Interesting prospects for long-lived particle searches
- Open problem: Unitarization of BSF cross section