WILSON LINE-BASED ACTION FOR GLUODYNAMICS:

QUANTUM CORRECTIONS

In collaboration with P. Kotko, A. Stasto.

Hiren Kakkad kakkad@agh.edu.pl

NCN GRANT 2021/41/N/ST2/02956 Faculty of Physics and Applied Computer Science.

2PiNTS-IFJ Krakow

November 24, 2023

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Agenda

1. Flash of P. Kotko's talk

2. Quantum Corrections

3. Summary

4. Outlook

1. Flash of P. Kotko's talk

Z-FIELD ACTION

Structure of the new action

- No three point interaction vertices.
- No $(+\cdots+)$, $(-\cdots-)$, $(-+\cdots+)$, and $(-\cdots-+)$ vertices.

Z-FIELD ACTION

Structure of the new action

$$S[Z^{\bullet}, Z^{\star}] = \int dx^{+} \left\{ \mathcal{L}_{-+} + \frac{\mathcal{L}_{--++} + \mathcal{L}_{--+++} + \mathcal{L}_{--++++} + \dots}{MHV} \right\}$$
$$+ \frac{\mathcal{L}_{---++}}{\mathbb{E}} + \frac{\mathcal{L}_{---+++} + \mathcal{L}_{---++++} + \dots}{\mathbb{E}} + \frac{\mathcal{L}_{---+++}}{\mathbb{E}} + \mathcal{L}_{----++++} + \mathcal{L}_{---+++++} + \dots \right\}$$

- No three point interaction vertices.
- No $(+\cdots+)$, $(-\cdots-)$, $(-+\cdots+)$, and $(-\cdots-+)$ vertices.

Z-FIELD WILSON LINE

Geometrical Representation of $\hat{Z}^{\star}[A^{\bullet}, A^{\star}]$:

2. QUANTUM CORRECTIONS

QUANTUM CORRECTIONS - LOOPS

Immediate issues

- Missing terms in the action.
- One-loop amplitudes with all external gluons having positive helicities $(++\cdots+)$ cannot be calculated within the Z-field action, since every vertex has at least two + and two helicity fields.

All plus one-loop gluon amplitudes: Each vertex is (+ + -)

QUANTUM CORRECTIONS - LOOPS

Immediate issues

H Kakkad

- Missing terms in the action.
- One-loop amplitudes with all external gluons having positive helicities $(++\cdots+)$ cannot be calculated within the Z-field action, since every vertex has at least two + and two helicity fields.

All plus one-loop gluon amplitudes is a rational function of the spinor products:

$$\mathcal{A}_{n}^{\text{one-loop}}(++\cdots+) = g^{n} \sum_{1 \leq i < j < k < l \leq n} \frac{\langle ij \rangle [jk] \langle kl \rangle [li]}{\langle 1n \rangle \langle n(n-1) \rangle \langle (n-1)(n-2) \rangle \dots \langle 21 \rangle}$$

[Z. Bern, D. A. Kosower - 1992][Z. Kunszt, A. Signer, Z. Trocsanyi - 1994]

QUANTUM CORRECTIONS - LOOPS

The technique of Effective Action to systematically develop loop amplitudes.

One-Loop Effective action

[Bryce S DeWitt - 1981]

$$\mathcal{Z}_{\mathrm{YM}}[J] = \int [dA] \, e^{i \left(S_{\mathrm{YM}}[A] + \int d^4 x \operatorname{Tr} \hat{J}_i(x) \hat{A}^i(x)\right)} \,,$$

- Expand the action, up to second order in fields, around the classical solution $A_c[J]$.
- The higher order terms are necessary for corrections beyond one loop.
- The linear term vanishes due to the classical equations of motion, whereas the integration over the quadratic term gives

$$\mathcal{Z}_{\rm YM}[J] \approx \exp\left\{ i \, S_{\rm YM}[A_c] + i \int d^4 x \, {\rm Tr} \, \hat{J}_i(x) \, \hat{A}_c^i(x) - \frac{1}{2} {\rm Tr} \ln\left(\frac{\delta^2 S_{\rm YM}[A_c]}{\delta \hat{A}^i(x) \delta \hat{A}^j(y)}\right) \right\}$$

$$\begin{split} \mathcal{Z}_{\rm YM}[J] &\approx \exp\left\{ i\, S_{\rm YM}[A_c] + i \int d^4 x \, {\rm Tr} \, \hat{J}_i(x) \, \hat{A}^i_c(x) - \frac{1}{2} {\rm Tr} \ln\left(\frac{\delta^2 S_{\rm YM}[A_c]}{\delta \hat{A}^i(x) \delta \hat{A}^j(y)}\right) \right\} \\ & \downarrow \\ \mathcal{Z}[J] &\approx \exp\left\{ i\, S[Z_c] + i \int d^4 x \, {\rm Tr} \, \hat{J}_i(x) \, \hat{A}^i_c[Z_c](x) - \frac{1}{2} {\rm Tr} \ln\left(\frac{\delta^2 S_{\rm YM}[A_c[Z_c]]}{\delta \hat{A}^i(x) \delta \hat{A}^j(y)}\right) \right\} \end{split}$$

H. Kakkad

$$\mathcal{Z}_{\rm YM}[J] \approx \exp\left\{ i \underbrace{\mathsf{S}_{\rm YM}[\mathsf{A}_c]}_{\hat{\mathsf{A}}_c^i}(x) \to \hat{\mathsf{A}}_c^i[\mathsf{Z}_c](x) \to \hat{\mathsf{$$

Change in the log term: Diagrammatically

$$\mathcal{Z}[J] \approx \exp\left\{ i \, S[Z_c] + i \int d^4 x \, \mathrm{Tr} \, \hat{J}_i(x) \, \hat{A}_c^i[Z_c](x) - \frac{1}{2} \mathrm{Tr} \ln\left(\frac{\delta^2 S_{\mathrm{YM}}[A_c[Z_c]]}{\delta \hat{A}^i(x) \delta \hat{A}^j(y)}\right) \right\}$$

Tested

- Computed four point (++++), (+++-), (+---), and (----) one-loop amplitudes.
- $\bullet\,$ Used the same approach to successfully develop loops in the $\rm MHV$ action.

[H. Kakkad, P. Kotko, A. Stasto, 2022]

$$\mathcal{Z}[J] \approx \exp\left\{ i \, S[Z_c] + i \int d^4 x \, \mathrm{Tr} \, \hat{J}_i(x) \, \hat{A}_c^i[Z_c](x) - \frac{1}{2} \mathrm{Tr} \ln\left(\frac{\delta^2 S_{\mathrm{YM}}[A_c[Z_c]]}{\delta \hat{A}^i(x) \delta \hat{A}^j(y)}\right) \right\}$$

Merit

• Systematic approach to efficiently compute pure gluonic amplitudes up to one-loop.

Drawback

• The interaction vertices of our new action are not explicit in the loop.

H. Kakkad

Previous approach

$$\mathcal{Z}_{\mathrm{YM}}[J] \xrightarrow{\mathrm{OLEA}} \mathcal{Z}_{\mathrm{YM}}^{\mathrm{one-loop}}[A_{c}[J]] \xrightarrow{\hat{A}^{\bullet}[Z^{\bullet},Z^{\star}], \hat{A}^{\star}[Z^{\bullet},Z^{\star}]} \mathcal{Z}^{\mathrm{one-loop}}[Z_{c}[J]]$$

Change: Reverse the order of operations

$$\mathcal{Z}[J] = \int [dA] \, e^{i \left(S_{\mathrm{YM}}[A] + \int d^4 x \operatorname{Tr} \hat{J}_j(x) \hat{A}^j(x)\right)} \longrightarrow \int [dZ] \, e^{i \left(S[Z] + \int d^4 x \operatorname{Tr} \hat{J}_j(x) \hat{A}^j[Z](x)\right)}$$

Notice:

$$\int d^4 x \operatorname{Tr} \hat{J}_j(x) \hat{A}^j(x) \longrightarrow \int d^4 x \operatorname{Tr} \hat{J}_j(x) \hat{A}^j[Z](x)$$

One-loop approximation:

$$\begin{split} \mathsf{S}[Z] &+ \int d^4 x \operatorname{Tr} \hat{J}_i(x) \hat{\mathsf{A}}^i[Z](x) = \mathsf{S}[Z_c] + \int d^4 x \operatorname{Tr} \hat{J}_i(x) \hat{\mathsf{A}}^i[Z_c](x) \\ &+ \int d^4 x \operatorname{Tr} \left(\hat{Z}^i(x) - \hat{Z}^i_c(x) \right) \left(\frac{\delta \mathsf{S}[Z_c]}{\delta \hat{Z}^i(x)} + \int d^4 y \, \hat{J}_k(y) \frac{\delta \hat{\mathsf{A}}^k[Z_c](y)}{\delta \hat{Z}^i(x)} \right) \\ &+ \frac{1}{2} \int d^4 x d^4 y \operatorname{Tr} \left(\hat{Z}^i(x) - \hat{Z}^i_c(x) \right) \left(\frac{\delta^2 \mathsf{S}[Z_c]}{\delta \hat{Z}^i(x) \delta \hat{Z}^j(y)} \right. \\ &+ \int d^4 z \, \hat{J}_k(z) \frac{\delta^2 \hat{\mathsf{A}}^k[Z_c](z)}{\delta \hat{Z}^i(x) \delta \hat{Z}^j(y)} \right) \left(\hat{Z}^j(y) - \hat{Z}^j_c(y) \right) \,. \end{split}$$

One-loop effective action:

$$\begin{split} \mathcal{Z}[J] &\approx \exp\left\{ i \left(\mathsf{S}[\mathsf{Z}_{\mathsf{c}}] + \int d^4 \mathbf{x} \operatorname{Tr} \, \hat{J}_l(\mathbf{x}) \, \hat{\mathsf{A}}^l[\mathsf{Z}_{\mathsf{c}}](\mathbf{x}) \right) \\ &- \frac{1}{2} \operatorname{Tr} \ln \left(\frac{\delta^2 \mathsf{S}[\mathsf{Z}_{\mathsf{c}}]}{\delta \hat{\mathcal{Z}}^i(\mathbf{x}) \delta \hat{\mathcal{Z}}^k(\mathbf{y})} + \int d^4 z \, \hat{J}_l(z) \frac{\delta^2 \hat{\mathsf{A}}^l[\mathsf{Z}_{\mathsf{c}}](z)}{\delta \hat{\mathcal{Z}}^i(\mathbf{x}) \delta \hat{\mathcal{Z}}^k(\mathbf{y})} \right) \right\}. \end{split}$$

H. Kakkad Wilson line-based action for gluodynamics: quantum corrections 🕓 Quantum Corrections $\circ \circ \circ \circ \circ$

QUANTUM CORRECTIONS: THE EQUIVALENCE

Approach 1

$$\mathcal{Z}_{\mathrm{YM}}[J] \xrightarrow{\mathrm{OLEA}} \mathcal{Z}_{\mathrm{YM}}^{\mathrm{one-loop}}[A_{c}[J]] \xrightarrow{\hat{A}^{\bullet}[Z^{\bullet},Z^{\star}], \hat{A}^{\star}[Z^{\bullet},Z^{\star}]} \mathcal{Z}^{\mathrm{one-loop}}[Z_{c}[J]]$$

Approach 2

$$\mathcal{Z}_{\mathrm{YM}}[J] \xrightarrow{\hat{A}^{\bullet}[Z^{\bullet}, Z^{\star}], \hat{A}^{\star}[Z^{\bullet}, Z^{\star}]} \mathcal{Z}[J] \xrightarrow{\mathrm{OLEA}} \mathcal{Z}^{\mathrm{one-loop}}[Z_{\mathsf{c}}[J]]$$

The two approaches give equivalent actions.

$$\mathrm{Tr} \ln \left(\frac{\delta^2 S[Z_c]}{\delta \hat{A}^i(x) \delta \hat{A}^k(y)} + \int d^4 z \hat{J}_l(z) \frac{\delta^2 \hat{A}^l[Z_c](z)}{\delta \hat{A}^i(x) \delta \hat{A}^k(y)} \right) \longrightarrow \mathrm{Tr} \ln \left(\frac{\delta^2 S_{\mathrm{YM}}[A_c[Z_c]]}{\delta \hat{A}^i(x) \delta \hat{A}^j(y)} \right) = 0$$

QUANTUM CORRECTIONS: THE EQUIVALENCE

H. Kakkad

Wilson line-based action for gluodynamics: quantum corrections \circ Quantum Corrections $\circ \circ \circ \circ \bullet$

SUMMARY

- Z-field action allows to efficiently compute pure gluonic amplitudes.
- There are no triple-gluon vertices.
- Vertices in Z-field action have an easy calculable form.
- No. of diagrams for split-helicity tree amplitudes follow Delannoy numbers.
- The Z-theory is geometrically rich and intriguing.
- Quantum corrections can be systematically developed using the One-loop effective action approach.

4. OUTLOOK

OUTLOOK

- Higher loops.
- Geometric exploartion of scattering amplitudes.
- Supersymmetric extension of the Z-action.

Thank You for your Time!

Hiren Kakkad Krakow, November 24, 2023

kakkad@agh.edu.pl

COLOR DECOMPOSITION

[F.A. Berends and W.T. Giele, 1987]; [M. Mangano, S. Parke and Z. Xu, 1988]; [M. Mangano, 1988]; [Z. Bern and D.A. Kosower, 1991]

- Technique to disentangle the color and kinematical degrees of freedom.
- Lie Algebra structure constants in terms of generators *T*^{*a*}.

$$i\sqrt{2}f^{abc} = \operatorname{Tr}(T^{a}T^{b}T^{c}) - \operatorname{Tr}(T^{a}T^{c}T^{b}); \qquad \operatorname{Tr}(T^{a}T^{b}) = \delta^{ab}$$

• Fierz Identity systematically combines them into a single trace.

$$(\mathbf{T}^{a})_{i_{1}}^{j_{1}} (\mathbf{T}^{a})_{i_{2}}^{j_{2}} = \delta_{i_{1}}^{j_{2}} \delta_{i_{2}}^{j_{1}} - \frac{1}{N} \delta_{i_{1}}^{j_{1}} \delta_{i_{2}}^{j_{2}}$$

• n-gluon tree amplitudes:

$$\mathcal{A}_{n}^{tree}(\{k_{i},h_{i},a_{i}\}) = \sum_{\sigma \in S_{n}/Z_{n}} \operatorname{Tr}(T^{a_{\sigma(1)}} \cdots T^{a_{\sigma(n)}}) \mathcal{A}_{n}^{tree}(\sigma(1^{h_{1}}),\ldots,\sigma(n^{h_{n}}))$$

COLOR DECOMPOSITION

SPINOR HELICITY FORMALISM

[P. De Causmaecker et.al. 82]; [F. A. Berends et. al. 82]; [R. Kleiss et. al. 85]; [Z. Xu et. al. 87]; [R. Gastmans et. al. 90]

- Uniform description of the on-shell degrees of freedom (DOF).
- Spinors from massless Dirac equation.
- Kinematical DOF in terms of Spinors:
 - 4-Momentum $k_i^{\mu} \equiv (k_i^0, k_i^1, k_i^2, k_i^3)$ in terms of Spinors:

$$\boldsymbol{k}_{i}^{\mu}(\sigma_{\mu})_{\alpha\dot{\alpha}} = (\boldsymbol{k}_{i})_{\alpha\dot{\alpha}} = \begin{pmatrix} \boldsymbol{k}_{i}^{0} + \boldsymbol{k}_{i}^{3} & \boldsymbol{k}_{i}^{1} - i\boldsymbol{k}_{i}^{2} \\ \boldsymbol{k}_{i}^{1} + i\boldsymbol{k}_{i}^{2} & \boldsymbol{k}_{i}^{0} - \boldsymbol{k}_{i}^{3} \end{pmatrix} = \lambda_{i\,\alpha}\,\widetilde{\lambda}_{i\,\dot{\alpha}}.$$

- Polarization vectors also in terms of Spinors.
- Renders the analytic expressions of amplitudes compact.
- In order to uniformize the description we take all particles as outgoing.

HELICITY AMPLITUDES

Example: 2

$\rm MHV$ Amplitudes

Maximally Helicity Violating

$$A_n^{tree}(\ldots,j^-,\ldots,l^-,\ldots) = \frac{\langle jl \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}.$$

[S.J.Parke, T.R Taylor, 1986]

Spinor product

$$\langle ij
angle \equiv \langle \lambda_i \lambda_j
angle = \epsilon_{lpha eta} \, \lambda_i^{lpha} \, \lambda_j^{eta} \,, \quad ext{where} \quad \epsilon_{lpha eta} = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} \,.$$

Wilson line-based action for gluodynamics: quantum corrections $\,\cdot\,\,$ Outlook $\,\circ\,\circ\,ullet\,$

HELICITY AMPLITUDES

Example: 2

$\overline{\rm MHV}$ Amplitudes

$$A_{n}^{tree}(\ldots,j^{+},\ldots,l^{+},\ldots) = \frac{[jl]^{4}}{[12][23]\cdots[n1]}$$
$$[ij] \equiv [\widetilde{\lambda}_{i}\widetilde{\lambda}_{j}] = -\epsilon_{\dot{\alpha}\dot{\beta}}\,\widetilde{\lambda}_{i}^{\dot{\alpha}}\,\widetilde{\lambda}_{j}^{\dot{\beta}}.$$

Our convention:

 $MHV \equiv$ 2 gluons of + helicity and rest minus. $\overline{MHV} \equiv$ 2 gluons of - helicity and rest plus.

$\langle ij \rangle \equiv \langle \lambda_i \lambda_j \rangle = \epsilon_{\alpha\beta} \, \lambda_i^{\alpha} \, \lambda_j^{\beta} \,, \quad \text{where} \quad \epsilon_{\alpha\beta} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \,.$

CACHAZO-SVRCEK-WITTEN (CSW) METHOD

[F. Cachazo, P. Svrcek, E. Witten, 2004]

Basic idea

- Method truly motivated by the geometry.
- <u>MHV amplitudes</u> continued off-shell are used as interaction vertices.
- Any amplitude can be constructed by combining such vertices using <u>scalar propagators</u>.

This technique gives a simple and systematic method of computing amplitudes of gluons.

CACHAZO-SVRCEK-WITTEN (CSW) METHOD

[J. Scherk and J.H. Schwarz, 1975]

Yang-Mills action on the Light-cone

$$S_{\rm YM} [A^{\bullet}, A^{\star}] = \int dx^+ \left(\mathcal{L}_{+-} + \mathcal{L}_{++-} + \mathcal{L}_{++--} + \mathcal{L}_{++--} \right) \,.$$

• Kinetic term:

$$\mathcal{L}_{+-} \left[\mathsf{A}^{ullet}, \mathsf{A}^{\star}
ight] = -\int d^{3}\mathbf{x} \operatorname{Tr} \hat{\mathsf{A}}^{ullet} \Box \hat{\mathsf{A}}^{\star}$$
 $\Box = \partial^{\mu} \partial_{\mu} = 2(\partial_{+} \partial_{-} - \partial_{ullet} \partial_{\star}),$

Recap: Yang-Mills action on the Light-cone

$$S_{\rm YM} = -\frac{1}{4} \int d^4 x \, {\rm Tr} \hat{F}^{\mu\nu} \hat{F}_{\mu\nu} \quad {\rm where} \quad \hat{F}^{\mu\nu} = \partial^{\mu} \hat{A}^{\nu} - \partial^{\nu} \hat{A}^{\mu} - ig \left[\hat{A}^{\mu}, \hat{A}^{\nu} \right]$$

- Two light like four-vectors: $\eta = \frac{1}{\sqrt{2}} (1, 0, 0, -1)$ $\tilde{\eta} = \frac{1}{\sqrt{2}} (1, 0, 0, 1)$
- Two complex transverse four-vectors:

$$\varepsilon_{\perp}^{\pm} = \frac{1}{\sqrt{2}} \left(0, 1, \pm \mathbf{i}, 0 \right)$$

• The components of a four-vector v

$$\mathbf{v}^+ = \mathbf{v} \cdot \eta \quad \mathbf{v}^- = \mathbf{v} \cdot \widetilde{\eta} \quad \mathbf{v}^\bullet = \mathbf{v} \cdot \varepsilon_{\perp}^+ \quad \mathbf{v}^\star = \mathbf{v} \cdot \varepsilon_{\perp}^-$$

- Light-cone gauge: $\mathbf{A} \cdot \eta = \mathbf{A}^+ = 0$.
- Action becomes quadratic in A⁻, can be integrated out.

$$S_{\rm YM} [A^{\bullet}, A^{\star}] = \int dx^+ \left(\mathcal{L}_{+-} + \mathcal{L}_{++-} + \mathcal{L}_{++--} + \mathcal{L}_{++--} \right) \,.$$

[H. Kakkad, P. Kotko, A. Stasto, 2021]

Yang-Mills action on the Light-cone

$$S_{\mathrm{YM}}\left[A^{\bullet},A^{\star}\right] = \int dx^{+} \left(\mathcal{L}_{+-} + \mathcal{L}_{++-} + \mathcal{L}_{++--} + \mathcal{L}_{++--}\right) \,.$$

Transformation:

• Eliminates both the triple gluon vertices.

$$\left\{ \hat{A}^{\bullet}, \hat{A}^{\star} \right\} \rightarrow \left\{ \hat{Z}^{\bullet} \left[A^{\bullet}, A^{\star} \right], \hat{Z}^{\star} \left[A^{\bullet}, A^{\star} \right] \right\},$$

• Generating functional:

$$\mathcal{G}[\mathbf{A}^{\bullet}, \mathbf{Z}^{\star}](\mathbf{x}^{+}) = -\int d^{3}\mathbf{x} \operatorname{Tr} \hat{\mathcal{W}}_{(-)}^{-1}[\mathbf{Z}](\mathbf{x}) \partial_{-} \hat{\mathcal{W}}_{(+)}[\mathbf{A}](\mathbf{x})$$

Wilson Line

$$\mathcal{W}[\mathbf{A}]\left(\mathbf{x},\mathbf{y}
ight)=\mathbb{P}\exp\left[ig\int_{\mathcal{C}}dz_{\mu}\,\hat{\mathbf{A}}^{\mu}\left(\mathbf{z}
ight)
ight]$$

[P. Kotko, 2014], [P. Kotko, A. Stasto, 2017]

H. Kakkad, P. Kotko, A. Stasto, 2021

$$\mathcal{W}^{a}_{(\pm)}[\mathbf{K}](\mathbf{x}) = \int_{-\infty}^{\infty} \mathbf{d}\alpha \operatorname{Tr} \left\{ \frac{1}{2\pi g} \mathbf{t}^{a} \partial_{-} \mathbb{P} \exp \left[i \mathbf{g} \int_{-\infty}^{\infty} \mathbf{d}\mathbf{s} \, \varepsilon_{\alpha}^{\pm} \cdot \hat{\mathbf{K}} \left(\mathbf{x} + \mathbf{s} \varepsilon_{\alpha}^{\pm} \right) \right] \right\} \,.$$
$$\varepsilon_{\alpha}^{\pm \mu} = \varepsilon_{\perp}^{\pm \mu} - \alpha \eta^{\mu} \,.$$
$$\mathcal{W}[\mathcal{W}^{-1}[\mathbf{K}]] = \mathbf{K} \,.$$

Geometric Representation of $\mathcal{W}^{a}_{(\pm)}[K](x)$:

DERIVING THE MHV ACTION

[P. Mansfield, 2006]

Basic Idea

$$S_{\rm YM} [A^{\bullet}, A^{\star}] = \int dx^+ \left(\mathcal{L}_{+-} + \mathcal{L}_{++-} + \mathcal{L}_{++--} + \mathcal{L}_{++--} \right) \,.$$

Interaction vertices

Transformation:

$$\{A^{ullet}, A^{\star}\}
ightarrow \{B^{ullet}, B^{\star}\}$$

$$\mathcal{L}_{+-} + \mathcal{L}_{++-} \longrightarrow \mathcal{L}_{+-}$$

MHV action: Action with MHV vertices

$$S_{\mathrm{YM}}\left[B^{\bullet},B^{\star}
ight] = \int dx^{+}\left(\mathcal{L}_{+-}+\mathcal{L}_{--+}+\cdots+\mathcal{L}_{--+\cdots+}+\cdots
ight)$$

TREE AMPLITUDES: DELANNOY NUMBERS

No. of diagrams						
A _{n,m}	2	3	4	5		
2	1	1	1	1	MHV	
3	1	3	5	7	NMHV	
4	1	5	13	25	NNMHV	
5	1	7	25	63	NNNMHV	

Delannoy Numbers					
(n,m)	0	1	2	3	
0	1	1	1	1	
1	1	3	5	7	
1	1	5	13	25	
3	1	7	25	63	
, i					

TREE AMPLITUDES: DELANNOY NUMBERS

No. of diagrams							
A _{n,m}	2	3	4	5			
2	1	1	1	1	MHV		
3	1	3	5	7	NMHV		
4	1	5	13	25	NNMHV		
5	1	7	25	63	NNNMHV		

Delannoy Numbers

(n,m)	0	1	2	3
0	1	1	1	1
1	1	3	5	7
1	1	5	13	25
3	1	7	25	63

The correspondence

$$\# A_{\underbrace{-\cdots -}_{m-2} \underbrace{+\cdots +}_{n-2}}^{(n+m-4\text{Tree})} = D(n,m) = \sum_{i=0}^{\min(n,m)} \binom{m}{i} \binom{n+m-i}{m} = \sum_{i=0}^{\min(n,m)} 2^{i} \binom{m}{i} \binom{n}{i}$$

Wilson line-based action for gluodynamics: quantum corrections \cdot Outlook $\circ \circ ullet$

YANG-MILLS ACTION ON THE LIGHT CONE

0

[J. Scherk and J.H. Schwarz, 1975]

$$S_{\mathrm{YM}}\left[A^{\bullet},A^{\star}\right] = \int dx^{+} \left(\mathcal{L}_{+-} + \mathcal{L}_{++-} + \mathcal{L}_{++--} + \mathcal{L}_{++--}\right)$$

$$\mathcal{L}_{+-} [\mathbf{A}^{\bullet}, \mathbf{A}^{\star}] = -\int d^{3}\mathbf{x} \operatorname{Tr} \hat{\mathbf{A}}^{\bullet} \Box \hat{\mathbf{A}}^{\star}$$
$$\mathcal{L}_{++-} [\mathbf{A}^{\bullet}, \mathbf{A}^{\star}] = -2ig' \int d^{3}\mathbf{x} \operatorname{Tr} \gamma_{\mathbf{x}} \hat{\mathbf{A}}^{\bullet} \left[\partial_{-} \hat{\mathbf{A}}^{\star}, \hat{\mathbf{A}}^{\bullet} \right]$$
$$\mathcal{L}_{--+} [\mathbf{A}^{\bullet}, \mathbf{A}^{\star}] = -2ig' \int d^{3}\mathbf{x} \operatorname{Tr} \overline{\gamma}_{\mathbf{x}} \hat{\mathbf{A}}^{\star} \left[\partial_{-} \hat{\mathbf{A}}^{\bullet}, \hat{\mathbf{A}}^{\star} \right]$$
$$\mathcal{L}_{++--} [\mathbf{A}^{\bullet}, \mathbf{A}^{\star}] = -g^{2} \int d^{3}\mathbf{x} \operatorname{Tr} \left[\partial_{-} \hat{\mathbf{A}}^{\bullet}, \hat{\mathbf{A}}^{\star} \right] \partial_{-}^{-2} \left[\partial_{-} \hat{\mathbf{A}}^{\star}, \hat{\mathbf{A}}^{\bullet} \right]$$
$$\gamma_{\mathbf{x}} = \partial_{-}^{-1} \partial_{\bullet}, \quad \overline{\gamma}_{\mathbf{x}} = \partial_{-}^{-1} \partial_{\star}, \qquad g' = \frac{g}{\sqrt{2}}$$

H. Kakkad

B - FIELDS

B - Fields as Wilson lines

[P. Kotko, 2014], [P. Kotko, A. Stasto, 2017]

$$B_{a}^{\bullet}[A](\mathbf{x}) = \int_{-\infty}^{\infty} d\alpha \operatorname{Tr} \left\{ \frac{1}{2\pi g} t^{a} \partial_{-} \mathbb{P} \exp \left[ig \int_{-\infty}^{\infty} ds \, \varepsilon_{\alpha}^{+} \cdot \hat{A} \left(\mathbf{x} + s \varepsilon_{\alpha}^{+} \right) \right] \right\}$$
$$\varepsilon_{\alpha}^{+} = \varepsilon_{\perp}^{+} - \alpha \eta, \quad \hat{A} = A_{a} t^{a}$$

[H. Kakkad, P. Kotko, A. Stasto, 2020]

$$B_{a}^{\star}(\mathbf{x}) = \int d^{3}\mathbf{y} \left[\frac{\partial_{-}^{2}(\mathbf{y})}{\partial_{-}^{2}(\mathbf{x})} \frac{\delta B_{a}^{\bullet}(\mathbf{x}^{+};\mathbf{x})}{\delta A_{c}^{\bullet}(\mathbf{x}^{+};\mathbf{y})} \right] A_{c}^{\star}(\mathbf{x}^{+};\mathbf{y})$$

B FIELDS

Geometrical Representation.

[P. Kotko, 2014], [P. Kotko, A. Stasto, 2017], [H. Kakkad, P. Kotko, A. Stasto, 2020]

Wilson line-based action for gluodynamics: quantum corrections · Outlook o o •

WILSON LINE KERNELS

$$\widetilde{B}_{a}^{\bullet}(\mathbf{x}^{+};\mathbf{P}) = \sum_{n=1}^{\infty} \int d^{3}\mathbf{p}_{1} \dots d^{3}\mathbf{p}_{n} \widetilde{\Gamma}_{n}^{a\{b_{1}\dots b_{n}\}}(\mathbf{P};\{\mathbf{p}_{1},\dots,\mathbf{p}_{n}\}) \prod_{i=1}^{n} \widetilde{A}_{b_{i}}^{\bullet}(\mathbf{x}^{+};\mathbf{p}_{i})$$
$$\widetilde{B}_{a}^{\star}(\mathbf{x}^{+};\mathbf{P}) = \sum_{n=1}^{\infty} \int d^{3}\mathbf{p}_{1} \dots d^{3}\mathbf{p}_{n} \widetilde{\Upsilon}_{n}^{ab_{1}\{b_{2}\dots b_{n}\}}(\mathbf{P};\mathbf{p}_{1},\{\mathbf{p}_{2},\dots,\mathbf{p}_{n}\}) \widetilde{A}_{b_{1}}^{\star}(\mathbf{x}^{+};\mathbf{p}_{1}) \prod_{i=2}^{n} \widetilde{A}_{b_{i}}^{\bullet}(\mathbf{x}^{+};\mathbf{p}_{i})$$

where

1

$$\widetilde{\Gamma}_{n}^{a\{b_{1}\dots b_{n}\}}(\mathbf{P};\{\mathbf{p}_{1},\dots,\mathbf{p}_{n}\}) = (-g)^{n-1} \frac{\delta^{3}\left(\mathbf{p}_{1}+\dots+\mathbf{p}_{n}-\mathbf{P}\right) \operatorname{Tr}\left(t^{a}t^{b_{1}}\dots t^{b_{n}}\right)}{\widetilde{v}_{1(1\dots n)}^{*}\widetilde{v}_{(12)(1\dots n)}^{*}\cdots\widetilde{v}_{(1\dots n-1)(1\dots n)}^{*}}$$
$$\widetilde{\Upsilon}_{n}^{ab_{1}\{b_{2}\dots b_{n}\}}(\mathbf{P};\mathbf{p}_{1},\{\mathbf{p}_{2},\dots,\mathbf{p}_{n}\}) = n\left(\frac{p_{1}^{+}}{p_{1\dots n}^{+}}\right)^{2}\widetilde{\Gamma}_{n}^{ab_{1}\dots b_{n}}(\mathbf{P};\mathbf{p}_{1},\dots,\mathbf{p}_{n})$$

Wilson line-based action for gluodynamics: quantum corrections \cdot Outlook $\circ \circ \bullet$

INVERSE WILSON LINE KERNELS

$$\widetilde{A}_{a}^{\bullet}(\mathbf{x}^{+};\mathbf{P}) = \sum_{n=1}^{\infty} \int d^{3}\mathbf{p}_{1} \dots d^{3}\mathbf{p}_{n} \widetilde{\Psi}_{n}^{a\{b_{1}\dots b_{n}\}}(\mathbf{P};\{\mathbf{p}_{1},\dots,\mathbf{p}_{n}\}) \prod_{i=1}^{n} \widetilde{B}_{b_{i}}^{\bullet}(\mathbf{x}^{+};\mathbf{p}_{i})$$
$$\widetilde{A}_{a}^{\star}(\mathbf{x}^{+};\mathbf{P}) = \sum_{n=1}^{\infty} \int d^{3}\mathbf{p}_{1} \dots d^{3}\mathbf{p}_{n} \widetilde{\Omega}_{n}^{ab_{1}\{b_{2}\dots b_{n}\}}(\mathbf{P};\mathbf{p}_{1},\{\mathbf{p}_{2},\dots,\mathbf{p}_{n}\}) \widetilde{B}_{b_{1}}^{\star}(\mathbf{x}^{+};\mathbf{p}_{1}) \prod_{i=2}^{n} \widetilde{B}_{b_{i}}^{\bullet}(\mathbf{x}^{+};\mathbf{p}_{i})$$

where the kernels are

$$\begin{split} \widetilde{\Psi}_{n}^{a\{b_{1}\cdots b_{n}\}}(\mathbf{P};\{\mathbf{p}_{1},\ldots,\mathbf{p}_{n}\}) &= -(-g)^{n-1} \frac{\widetilde{v}_{(1\cdots n)1}^{\star}}{\widetilde{v}_{1(1\cdots n)}^{\star}} \frac{\delta^{3}(\mathbf{p}_{1}+\cdots+\mathbf{p}_{n}-\mathbf{P}) \operatorname{Tr}(t^{a}t^{b_{1}}\cdots t^{b_{n}})}{\widetilde{v}_{21}^{\star}\widetilde{v}_{32}^{\star}\cdots\widetilde{v}_{n(n-1)}^{\star}} \\ \widetilde{\Omega}_{n}^{ab_{1}\{b_{2}\cdots b_{n}\}}(\mathbf{P};\mathbf{p}_{1},\{\mathbf{p}_{2},\ldots,\mathbf{p}_{n}\}) &= n \left(\frac{p_{1}^{+}}{p_{1\cdots n}^{+}}\right)^{2} \widetilde{\Psi}_{n}^{ab_{1}\cdots b_{n}}(\mathbf{P};\mathbf{p}_{1},\ldots,\mathbf{p}_{n}) \end{split}$$

Wilson line-based action for gluodynamics: quantum corrections \cdot Outlook $\circ \circ \bullet$

Z-FIELD ACTION

Important features

• There are MHV vertices, $(--+\cdots+)$, corresponding to MHV amplitudes in the on-shell limit.

$$\mathcal{A}\left(1^{-},2^{-},3^{+},\ldots,\boldsymbol{n}^{+}\right) \equiv \left(\frac{\boldsymbol{p}_{1}^{+}}{\boldsymbol{p}_{2}^{+}}\right)^{2} \frac{\widetilde{\boldsymbol{v}}_{21}^{*4}}{\widetilde{\boldsymbol{v}}_{1n}^{*}\widetilde{\boldsymbol{v}}_{n(n-1)}^{*}\widetilde{\boldsymbol{v}}_{(n-1)(n-2)}^{*}\cdots\widetilde{\boldsymbol{v}}_{21}^{*}}$$

• There are $\overline{\rm MHV}$ vertices, $(-\cdots -++)$, corresponding to $\overline{\rm MHV}$ amplitudes in the on-shell limit.

$$\mathcal{A}\left(1^{-},\ldots,\boldsymbol{n}-2^{-},\boldsymbol{n}-1^{+},\boldsymbol{n}^{+}\right) \equiv \left(\frac{\boldsymbol{p}_{\boldsymbol{n}-1}}{\boldsymbol{p}_{\boldsymbol{n}}^{+}}\right)^{2} \frac{\widetilde{\boldsymbol{v}}_{\boldsymbol{n}(\boldsymbol{n}-1)}}{\widetilde{\boldsymbol{v}}_{1\boldsymbol{n}}\widetilde{\boldsymbol{v}}_{\boldsymbol{n}(\boldsymbol{n}-1)}\widetilde{\boldsymbol{v}}_{(\boldsymbol{n}-1)(\boldsymbol{n}-2)}\ldots\widetilde{\boldsymbol{v}}_{21}}$$

Z FIELD WILSON LINE

Z - Fields as Wilson Line functionals

$$Z_{a}^{\star}[B^{\star}](\mathbf{x}) = \int_{-\infty}^{\infty} d\alpha \operatorname{Tr} \left\{ \frac{1}{2\pi g} t^{a} \partial_{-} \mathbb{P} \exp \left[ig \int_{-\infty}^{\infty} ds \, \varepsilon_{\alpha}^{-} \cdot \hat{B} \left(\mathbf{x} + s \varepsilon_{\alpha}^{-} \right) \right] \right\}$$
$$\varepsilon_{\alpha}^{-} = \varepsilon_{\perp}^{-} - \alpha \eta, \quad \hat{B} = B_{a} t^{a}$$

$$Z_{a}^{\bullet}(\mathbf{x}) = \int d^{3}\mathbf{y} \left[\frac{\partial_{-}^{2}(\mathbf{y})}{\partial_{-}^{2}(\mathbf{x})} \frac{\delta Z_{a}^{\star}(\mathbf{x}^{+};\mathbf{x})}{\delta B_{c}^{\star}(\mathbf{x}^{+};\mathbf{y})} \right] B_{c}^{\bullet}(\mathbf{x}^{+};\mathbf{y})$$

H. Kakkad

INVERSE WILSON LINE KERNELS

$$\widetilde{B}_{a}^{\star}(\mathbf{x}^{+};\mathbf{P}) = \sum_{n=1}^{\infty} \int d^{3}\mathbf{p}_{1} \dots d^{3}\mathbf{p}_{n} \,\overline{\widetilde{\Psi}}_{n}^{a\{b_{1}\dots b_{n}\}}(\mathbf{P};\{\mathbf{p}_{1},\dots,\mathbf{p}_{n}\}) \prod_{i=1}^{n} \widetilde{Z}_{b_{i}}^{\star}(\mathbf{x}^{+};\mathbf{p}_{i})$$
$$\widetilde{B}_{a}^{\bullet}(\mathbf{x}^{+};\mathbf{P}) = \sum_{n=1}^{\infty} \int d^{3}\mathbf{p}_{1} \dots d^{3}\mathbf{p}_{n} \,\overline{\widetilde{\Omega}}_{n}^{ab_{1}\{b_{2}\dots b_{n}\}}(\mathbf{P};\mathbf{p}_{1},\{\mathbf{p}_{2},\dots,\mathbf{p}_{n}\}) \widetilde{Z}_{b_{1}}^{\bullet}(\mathbf{x}^{+};\mathbf{p}_{1}) \prod_{i=2}^{n} \widetilde{Z}_{b_{i}}^{\star}(\mathbf{x}^{+};\mathbf{p}_{i})$$

with

$$\overline{\widetilde{\Psi}}_{n}^{a\{b_{1}\cdots b_{n}\}}(\mathbf{P};\{\mathbf{p}_{1},\ldots,\mathbf{p}_{n}\}) = -(-g)^{n-1} \frac{\widetilde{V}_{(1\cdots n)1}}{\widetilde{V}_{1(1\cdots n)}} \frac{\delta^{3}(\mathbf{p}_{1}+\cdots+\mathbf{p}_{n}-\mathbf{P}) \operatorname{Tr}(t^{a}t^{b_{1}}\cdots t^{b_{n}})}{\widetilde{V}_{21}\widetilde{V}_{32}\cdots\widetilde{V}_{n(n-1)}}$$
$$\overline{\widetilde{\Omega}}_{n}^{ab_{1}\{b_{2}\cdots b_{n}\}}(\mathbf{P};\mathbf{p}_{1},\{\mathbf{p}_{2},\ldots,\mathbf{p}_{n}\}) = n \left(\frac{p_{1}^{+}}{p_{1\cdots n}^{+}}\right)^{2} \overline{\widetilde{\Psi}}_{n}^{ab_{1}\cdots b_{n}}(\mathbf{P};\mathbf{p}_{1},\ldots,\mathbf{p}_{n})$$

V-SYMBOLS

$$\widetilde{\mathbf{v}}_{ij} = \mathbf{p}_i^+ \left(rac{\mathbf{p}_j^\star}{\mathbf{p}_j^+} - rac{\mathbf{p}_i^\star}{\mathbf{p}_i^+}
ight), \qquad \widetilde{\mathbf{v}}_{ij}^\star = \mathbf{p}_i^+ \left(rac{\mathbf{p}_j^\bullet}{\mathbf{p}_j^+} - rac{\mathbf{p}_i^\bullet}{\mathbf{p}_i^+}
ight)$$

THE END!