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Motivation

Following the work by M. Deak, F. Hautmann, H. Jung and K.
Kutak: Forward jet production at the Large Hadron Collider

Collinear factorization in QCD
Automated calculations up to NLO since
over decade.
Excellent descriptions of non forward jets.
To have a distribution of the angle between
to jets in pp → 2j, one need NLO accuracy.

Hybrid kT factorization in QCD
Calculations only up to LO.
As initial state already has transverse
component, the final state jets in pp → 2j are
not necessary back to back.
Necessary framework to description forward
jets.

Fig. 1: Distribution of the azimuthal angle.
From A. v. Hameren, P. Kotko, K. Kutak and S.
Sapeta: Small-xdynamics in forward–central dijet
correlations at the LHC

Grzegorz Ziarko (INP) NLO for hybrid kT -factorization 24.11.2023 2 / 16



Collinear factorization in QCD

Collinear factorization in QCD
Automated calculations up to NLO since over decade.

dσLO =

∫
dxin

xin

dx in
x in

fin(xin)fin(x in)dB(xin, x in) (1)

initial states:
kµ

in = xinPµ

kµ

in
= x inP

µ (2)
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Collinear factorization in QCD at NLO

Collinear factorization in QCD
Automated calculations up to NLO since over decade.

dσLO =

∫
dxin

xin

dx in
x in

fin(xin)fin(x in)dB(xin, x in)

initial states:
kµ

in = xinPµ

kµ

in
= x inP

µ

dσNLO =

∫
dxin

xin

dx in
x in

{
fin(xin)fin(x in)

[
dV (xin, x in) + dR(xin, x in)

] }
(3) Not finite
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Collinear factorization in QCD at NLO

dσLO =

∫
dxin

xin

dx in
x in

fin(xin)fin(x in)dB(xin, x in)

initial states:

kµ
in = xinPµ

kµ

in
= x inP

µ

dσNLO =
∫ dxin

xin

dx in
x in

{
fin(xin)fin(x in)

[
dV (xin, x in) + dR(xin, x in)

]
cancelling

+

[
fin(xin)

−αs

2πϵ
∫ 1

x in
dzPin(z)fin(x in/z)

fin(x in)
−αs

2πϵ
∫ 1

xin
dzPin(z)fin(xin/z)

]
dB(xin, x in)

} Not finite at all
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kµ

in
= x inP
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dσNLO =
∫ dxin

xin

dx in
x in

{
fin(xin)fin(x in)

[
dV (xin, x in) + dR(xin, x in)

]
cancelling

+

[
fin(xin)

−αs

2πϵ
∫ 1

x in
dzPin(z)fin(x in/z)

+fin(x in)
−αs

2πϵ
∫ 1

xin
dzPin(z)fin(xin/z)

]
dB(xin, x in)

+
[
f (1)in (xin)fin(x in) + fin(xin)f

(1)
in

(x in)
] αs

2π
dB(xin, x in)

}
Finite at all

f (1)
in

(x in)−
1
ϵ

∫ 1

x in

dzPin(z)fin(x in/z) = finite

f (1)in (xin)−
1
ϵ

∫ 1

xin

dzPin(z)fin(xin/z) = finite
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Objective

Hybrid kT factorization in QCD
Establish the same within hybrid kT -factorization, for which the LO cross section formula is:

dσLO =

∫
dxin

xin

d2kT

π

dx in
x in

Fin(xin, kT )fin(x in)dB∗(xin, kT , x in) (4)

The amplitudes inside B∗(xin, kT , x in) depend explicitly on kT .
They involve a space-like initial-state gluon with momentum kµ

in = xinPµ + kµ
T

We define kT as:
P · kT = 0
P · kT = 0

Such amplitudes need care to be well-defined, to be gauge invariant
We apply the auxiliary-parton method, and our objective is within this constraint
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Auxiliary parton method
Introduced by A. v. Hameren, P. Kotko and K. Kutak in Helicity amplitudes for high-energy scattering.
We put our interest on process with one space-like gluon. ω(p1) = g(p1)/q(P1)

g∗(kin)ωin(kin) → ω1(p1)ω2(p2) · · ·ωn(pn).

This process is obtained via named auxiliary parton method from process

q(k1(Λ))ωin(kin) → q(k2(Λ))ω1(p1)ω2(p2) · · ·ωn(pn)

with light-like momenta parametrized with Λ

kµ
1 = ΛPµ, kµ

2 = pµ
Λ = (Λ− xin)Pµ − kµ

T +
|kT |2

2Pµ · P
µ
(Λ− xin)

P
µ
.
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Auxiliary parton method
We put our interest on process with one space-like gluon. ω(p1) = g(p1)/q(P1)
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1 = ΛPµ, kµ

2 = pµ
Λ = (Λ− xin)Pµ − kµ

T +
|kT |2

2Pµ · P
µ
(Λ− xin)

P
µ
.

Their difference is

kµ
1 − kµ

2 = kµ
in + O(Λ−1) = xinPµ + kµ

T + O(Λ−1)

Taking Λ → ∞ one will obtain the matrix element with space-like gluon

x2
in|kT |2

g2
s CauxΛ2

|Maux |2(ΛP, kin;pΛ, {pi}n
i=1)

Λ→∞−−−−→ |M∗|2(kin, kin; {pi}n
i=1) (5)

As auxiliary partons we can choose quarks as well as gluons. Then

Caux−q =
N2

c − 1
Nc

,Caux−g = 2Nc .
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The NLO contributions - schematically

dσNLO =
∫ dxin

xin

d2kT

π

dx in
x in

{Fin(xin, |kT |)f (x in)
[
dV ∗(xin, kT , x in) + dR∗(xin, kT , x in)

]
+
[
F (1)

in (xin, |kT |)f (x in) + Fin(xin, |kT |)f (1)(x in)
]

dB∗(xin, kT , x in)}
(6)

Virtual contributions

dV ∗ = dV ∗fam + dV ∗unf

Familiar contribution conserve smooth on-shell kT → 0

Unfamiliar contribution dV ∗unf = aϵNcRe(Vaux)dB∗ aϵ =
αs

2π
(4π)ϵ

Γ(1 − ϵ)
; ϵ =

4 − dim
2

Vaux =

(
µ2

|kT |2

)ϵ [2
ϵ

ln
Λ

xin
− iπ + Vaux

]
+O(ϵ) +O(Λ−1)

Vaux−q =
1
ϵ

13
6

+
π2

3
+

80
18

+
1

N2
c

[
1
ϵ2 +

3
2

1
ϵ
+ 4

]
− nf

Nc

[
2
3

1
ϵ
+

10
9

]
Vaux−g = − 1

ϵ2 +
π2

3
Details in E. Blanco, A. Giachino, A. v. Hameren, P. Kotko: One-loop gauge invariant amplitudes with a space-like gluon.
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Real radiation
Real contribution we defined as

dR∗fam(kin, kin; {pi}n+1
i=1 ) =

aϵµ
2ϵ

πϵ

1
|kT |2

dΣ∗
n+1(kin, kin; {pi}n+1

i=1 )JR({pi}n+1
i=1 ) (7)

aϵ =
αs

2π
(4π)ϵ

Γ(1 − ϵ)
; πϵ =

π1−ϵ

Γ(1 − ϵ)

One parton more in a final state (compared to Born)
One collinear pair and / or one soft parton
The singularities look the same as if the initial-state gluon were on-shell

Independent of the type of auxiliary partons
No lnΛ

Did we miss something?

dR∗ = dR∗fam + dR∗unf

Came from phase space where the radiative gluon take part in consumption of the Λ

depends of type of auxiliary partons
violates the smooth on-shell limit and smooth large Λ limit
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Unfamiliar real contribution

In the unfamiliar case the radiative gluon participates in the consumption of Λ kT = qT + rT

x2
in|qT + rT |2

g2
s CauxΛ2

|Maux |2((Λ + xin)P, kin; xrΛP + rT + x r P, xqΛP + qT + xqP, {pi}n
i=1)

Λ→∞−−−−→ Qaux(xq ,qT , xr , rT )|M
∗|2(xinP − qT − rT , kin; {pi}n

i=1)

The phase space also factorizes, we can perform analytical integration, the result is:

dR∗unf (kin, kin; {pi}n+1
i=1 ) =

{
aϵNc

(
µ2

|kT |2

)ϵ
[
−2
ϵ

ln
2P · PΛ

|kT |2
+ Raux

]
+O(ϵ,Λ−1)

}
dB∗(kin, kin; {pi}n

i=1)
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Unfamiliar contributions - completed
Collection of virtual and real unfamiliar contribution brings

∆unf dB∗ = dR∗unf + dV ∗unf

general unfamiliar contribution is given by

∆unf =
aϵNc

ϵ

(
µ2

|kT |2

)ϵ
[
Jaux + Juniv + Juniv − 2ln

2P · Pxin

|kT |2

]
where

Juniv =
11
6

− nf

3Nc
− K

Nc
(−ϵ) with K = Nc

(
67
18

− π2

6

)
− 5nf

9

Jaux−g =
11
6

+
nf

3N3
c
+

nf

6N3
c
(−ϵ), Jaux−q =

3
2
− 1

2
(−ϵ)

• No lnΛ
• Target impact factor corrections as in Ciafaloni, Colferai 1999.
• Other terms also known in literature (Regge trajectory, renormalization of the coupling

constant)
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Familiar real collinear singularities

The dR∗fam has a singularity when a radiative gluon becomes collinear to P which leads to

divergence ∆coll with splitting as
1

z(1 − z)
− 2 + z(1 − z) included.

Tree-level matrix elements with a space-like gluon still have a singularity when a radiative gluon
becomes collinear to P.

|M∗|2
(
xinP + kT , kin; r , {pi}n

i=1
) r→xr P−−−−→ 2NC

P · r
x2

in
xr (xin − xr )2 |M

∗|2
(
(xin − xr )P + kT , kin; {pi}n

i=1
)

(8)

Similar to usual collinear gluon splitting with only the
1

z(1 − z)
part.

This leads to a non-cancelling divergence similar to the collinear case given by

∆∗
coll(xin, kT ) = −αϵ

ϵ

∫ 1

xin

dz
[

2NC

[1 − z]+
+

2NC

z
+ γgδ(1 − z)

]
F
(xin

z
, kT

)
(9)
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Summary
General NLO formula

dσNLO =

∫
dxin

xin

d2kT

π

dx in
x in

{
Fin(xin, kT )fin(x in)

[
dR∗(xin, kT , x in) + dV ∗(xin, kT , x in)

]
cancelling

+
[
F NLO

in (xin, kT ) + Fin(xin, kT )∆unf (xin, kT ) + ∆∗
coll(xin, kT )

]
fin(x in)dB∗(xin, kT , x in)[

f NLO in(x in) + ∆coll

]
Fin(xin, kT )dB∗(xin, kT , x in)

}
(10)

The collinear divergences ∆∗
coll and ∆coll

f NLO in(x in) + ∆coll → finite as in collinear factorization
F NLO

in (xin, kT ) + Fin(xin, kT )∆unf (xin, kT ) + ∆∗
coll(xin, kT ) → finite ? still necessity for scheme for

regularization

Details in A. v. Hameren, L. Motyka, G. Ziarko: Hybrid kT-factorization and impact factors at NLO. J. High Energ. Phys.
2022, 103 (2022). https://doi.org/10.1007/JHEP11(2022)103 [SPRINGER]
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https://link.springer.com/article/10.1007/JHEP11(2022)103


Thank you for listening!
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