Relativistic Hydrodynamic Fluctuations

Xin An

- Polish Particle and Nuclear Theory Summit
- Institute for Nuclear Physics, Polish Academy of Sciences
 - Nov 24 2023

SINCBJ

Fluctuations on all length scales

• Fluctuations are ubiquitous phenomena emerging on all length scales.

Nobel Prize in Physics 2021 S. Manabe, K. Hasselmann, G. Parisi

Air Temperature at 2 Meters (°C)

Atmosphere

January 23

Quantum fluctuations

Fluctuations in equilibrium

The subject of thermodynamics is complicated.

Feynman

Thermodynamic fluctuations

Thermodynamic fluctuations: systems possess large number of DOFs;

 Fluctuations on UV scales renormalize observed quantities on IR scales; *irrelevant* parameters flow to fixed point.

Kadanoff's block spin coarse-graining procedure in 2D Ising model

small deviation from Gaussian distribution due to the central limit theorem.

Wilson

Critical fluctuations

Smoluchowski, 1908; Einstein, 1910

Near the critical point, systems possess *smaller* number of effective DOFs and non-Gaussian fluctuations become more important (due to CLT).

Critical point: end point of phase transition curve in relevant parameter space, where the correlation length ξ diverges and universal behavior manifests.

EOS with fluctuations

• Defining $\phi = \psi - \langle \psi \rangle$, the partition function reads

$$Z(J) = e^{\mathscr{W}[J]} = \int \mathscr{D}\psi e^{-\int_{x} (S_{\text{eff}}(\psi) + J\psi)} = e^{-V(S_{\text{eff}}(\langle\psi\rangle) + J\langle\psi\rangle)} \int \mathscr{D}\phi e^{-\int_{x} (S_{\text{eff}}(\phi) + J\phi)}$$

E.g., for Ising model where $\langle \psi \rangle = M, J = H$, Brezin, Wallace, Zia et al, 1970s; Wilson and Kogut, 1974

Widom's scaling relation $H = M^{\delta} f(r/M)$ where $\delta = 3 + \varepsilon + \mathcal{O}(\varepsilon^2)$, $\beta = \frac{1}{2} - \frac{1}{6}\varepsilon + \mathcal{O}(\varepsilon^2)$, $\varepsilon = 4 - d$ four-point diagrams $X + \mathcal{O}(\varepsilon^2)$

one-point diagrams

$$I^{1/\beta}; u = u_*)$$

$$\beta(u) \equiv \frac{du}{db} = -\varepsilon u + \frac{3}{2}u^2 + \dots$$

Fluctuations out of equilibrium

Thermal equilibrium is extremely boring.

Susskind

Hydrodynamic fluctuations

Fluctuation dynamics in Brownian motion

• Einstein's formula for diffusion coefficient in $\partial_t \rho = D \nabla^2 \rho$: Einstein, 1905

$$D = \lim_{t \to \infty} \frac{1}{2t} \langle \Delta x^2(t) \rangle =$$

• Long-time behavior:

$$\langle v(t)v(0)\rangle \sim e^{-\mu t} \quad \rightarrow \quad D \sim \mu^{-1}$$

With only dissipation

 $\langle v(t)v(0)\rangle \sim t^{-3/2} \rightarrow D \sim t^{-1/2}$

With also fluctuations

Paul et al, 1981, J. Phys. A: Math. Gen. 14 3301

10x 10⁻⁴

Fluctuation dynamics in heavy-ion collisions

the equilibrium properties of QCD matters in different phases.

Out of equilibrium; observables fluctuate event-by-event

expands, cools followed by freezeout and thermalization.

High statistics; measured in *momentum* coordinate

History of a heavy-ion collision

• Fluctuating hydrodynamics is a *non-equilibrium* approach to unraveling

In equilibrium; observables fluctuate ensemble-by-ensemble

• Small bang vs Big bang: extreme initial state; particle synthesis; system

History of Universe

Cosmic variance; measured in space coordinate Static fluid & static

EFTs (top-down like)

Starting from effective action with first principles

e.g., Martin-Siggia-Rose (MSR), Schwinger-Keldysh (SK), Hohenberg-Halperin (HH), nparticle irreducible (nPI), etc.

Glorioso et al, 1805.09331 Jain et al, 2009.01356 Sogabe et al, 2111.14667 Chao et al, 2302.00720

• • •

EOMs (bottom-up like)

Starting from phenomenological equations with required properties

e.g., Langevin equations in stochastic description, Fokker-Planck (FP) equations in deterministic description.

Akamatsu et al, 1606.07742 Nahrgang et al, 1804.05728 Singh et al, 1807.05451 Chattopadhyay et al, 2304.07279

. . .

Pros: *one* equation, albeit *millions* of samples **Cons**: divergence due to infinite noise; ambiguity due to multiplicative noise

Deterministic

Fokker-Planck equation

probability evolution equation (Ito's)

$$\partial_t P = (-F_i P + (M_{ij} P)_{,j})_{,i}$$

$$\parallel \qquad \parallel \\ M_{ij} S_{,j} + M_{ij,j} \qquad Q_{ij} + \Omega_{ij} \qquad P_{eq}$$

 Q_{ii} : Onsager matrix (symmetric) Ω_{ii} : Poisson matrix (anti-symmetric)

Pros: infinite noise regularized analytically; multiplicative noise well defined **Cons**: *millions* of equations, albeit *one* sample

Dynamics of n-point correlators

• Evolution equations for generating function *W* : XA et al, 2009.10742, 2209.15005

$$\partial_t \mathscr{W} = e^{-\mathscr{W}}$$

where $F_i = F_i(\delta/\delta J_i), M_{ii} = M_{ii}(\delta/\delta J_i)$.

• The cumulant generating function $e^{\mathcal{W}[J;t]} \equiv Z[J;t] = \int \mathcal{D}\psi P[\psi;t] e^{J_i\psi_i}$ expands as

$$G_{i_1...i_n} \equiv \langle \phi_{i_1}...\phi_{i_n} \rangle = \frac{\delta^{(n)}\mathcal{W}}{\delta J_{i_1}...\delta J_{i_n}} \Big|_{J=0}$$

$$\phi \equiv \psi - \langle \psi \rangle$$

sharpness

n-pt correlators are related to *cumulants* by space integration

 $(J_i F_i + J_i J_i M_{ii}) e^{\mathscr{W}}$

...

Evolution equations and truncation

- - $\partial_t G_n = \mathscr{F}[\langle \psi \rangle, G_2, G_3, \dots, G_n, G_{n+1}, \dots G_{\infty}]$

E.g.,
$$\partial_t G_{ij} = F_{i,k}G_{kj} + F_{j,k}G_{ki} + 2M_{ij} + \frac{1}{2}F_{i,k\ell}G_{k\ell j} + \frac{1}{2}F_{j,k\ell}G_{k\ell i} + M_{ij,k\ell}G_{k\ell} + \dots$$

leading, only trees

• Introducing the loop expansion parameters $\varepsilon \sim 1$ /number of DOFs, the evolution equations can be systematically truncated and iteratively solved:

XA et al, 2009.10742

$$\partial_t G_n = \mathscr{F}[\langle \psi \rangle, G_2, G_3, \dots, G_n] + \mathcal{O}(\varepsilon^n)$$

Hydrodynamics: $\varepsilon \sim (\xi/\ell)^3 \sim \text{correlated volume / fluctuation volume}$ Holography: $\varepsilon \sim 1/N_c \sim 1$ / number of colors

• Evolution equations for *n*-pt correlators $G_n = G_{i_1...i_n}$: XA et al, 2009.10742, 2212.14029

need ∞ equations to close the system!

higher order, including loops

where
$$G_n \sim \varepsilon^{n-1}$$
, $F_i \sim 1$, $M_{ij} \sim \varepsilon$.

$$\phi \sim \sqrt{\epsilon}$$
 CLT!

Diagram representation

• Truncated equations for *n*-pt correlators (diagrams): XA et al, 2009.10742, 2212.14029

Multi-point Wigner function

$$W_n(x; q_1, ..., q_n) = \int d^3 y_1 ... d^3 y_n e^{-(iq_1 y_1)}$$

"While the bottom-up approach is useful in order to calculate two-point correlation functions, it is not immediately obvious how it should be generalized for the calculation of n-point correlation functions." Romatschke, 2019

• For fluctuation fields, we introduced the novel n-pt Wigner function XA et al, 2009.10742

 $\partial_t n = \nabla(\lambda \nabla \alpha) + \eta, \qquad \langle \eta(x)\eta(y) \rangle = 2 \nabla^{\prime}$

quantities	general	diffusive charge
variable	ψ_{i}	$n(oldsymbol{x})$
variable index	$i,j,k,~{ m etc.}$	$oldsymbol{x},oldsymbol{y},oldsymbol{z}, ext{etc.}$
Onsager matrix	Q_{ij}	$oldsymbol{ abla}_{oldsymbol{x}}\lambdaoldsymbol{ abla}_{oldsymbol{y}}\delta^{(3)}_{oldsymbol{x}oldsymbol{y}}$
drift force	F_i	$ abla_{oldsymbol{x}}\lambda oldsymbol{ abla}_{oldsymbol{x}}lpha$

 $n \equiv$ density; $\lambda \equiv$ conductivity; $\alpha \equiv$ chemical potential; $D = \lambda \alpha' \equiv$ diffusion coefficient

Evolution of n-point Wigner functions manifests strong memory effect

a point fluid

$${}^{(x)}\lambda\nabla^{(y)}\delta^{(3)}(x-y)$$

 $\partial_t W_3 = \dots$

17

Connection to top-down approach

Schwinger-Keldysh formalism Schwinger, Keldysh, 1960s

$$t_{i} = \int \mathscr{D}\psi_{1} \mathscr{D}\psi_{2} \mathscr{D}\chi_{1} \mathscr{D}\chi_{2} e^{iI_{0}(\psi_{1},\chi_{1}) - iI_{0}(\psi_{1},\chi_{1}) - iI_{0}(\psi_{1},\chi_{1})}$$

Glorioso et al, 1805.09331; Jain et al, 2009.01356

$$\mathscr{L}_{EFT}(\psi_r, \psi_a) = \psi_{ai} Q_{ij}^{-1}(F_j - \dot{\psi}_{rj}) + i\psi_{ai} Q_{ij}^{-1} \psi_{aj}$$

Inder KMS transformation $\widetilde{\psi}_r(-x) \to \psi_r(x), \quad \widetilde{\psi}_a(-x) \to \psi_a(x) + i\dot{\psi}_r(x)$

which is invariant un

$$P[\psi] = \int_{\psi_r = \psi(t)} \mathscr{D}\psi_r \mathscr{D}\psi_a J(\psi_r) e^{i\int_{-\infty}^t d\tau \mathscr{L}_{\text{EFT}}} \longrightarrow \partial_t P = (-F_i P + (Q_{ij} P)_{,j})_{,i}$$

Keldysh

$$\psi_{2},\chi_{2} = \int \mathscr{D}\psi_{r} \mathscr{D}\psi_{a} e^{i\int_{\tau}\mathscr{L}_{\text{EFT}}} \qquad \psi_{r} = \frac{1}{2} \left(\psi_{1} + \psi_{2}\right) \\ \psi_{a} = \psi_{1} - \psi_{2}$$

• The effective Lagrangian is constructed following *fundamental symmetries*:

XA et al, in progress

Fluctuations in relativistic hydrodynamics

The requirement of general covariance takes away from space and time the last remnant of physical objectivity.

Einstein

Relativistic dynamics

Eulerian specification

more often used in non-relativistic theory

There is a global time for every observer. All correlators G_n can be measured at the same time in the same frame (lab).

Lagrangian specification

more convenient for relativistic theory

 $\int u = u(\psi)$ $u \cdot \partial \psi_i = \dots$ $u \cdot \partial G_n = \dots$

> Each fluid cell has its own clock (proper time). How to define the analogous equal-time correlator G_n in relativistic theory?

Confluent formulation: correlator and derivative

Confluent formulation: covariant description for the comoving fluctuations.

See XA et al, 2212.14029 for more details

Confluent correlator \bar{G}

boost all fields (measured at their own local rest frame) to one common frame (chosen at their midpoint)

Confluent derivative $\overline{\nabla}$

$$\bar{\nabla}_{\mu}\bar{G}_{i_{1}...i_{n}} = \partial_{\mu}\bar{G}_{i_{1}...i_{n}} - n\left(\mathring{\omega}_{\mu b}^{a} y_{1}^{b}\partial_{a}^{(y_{1})}\bar{G}_{i_{1}...i_{n}} + \bar{\omega}_{\mu i_{1}}^{j_{1}}\bar{G}_{j_{1}...i_{n}}\right)_{\text{perm.}}$$

the frame at midpoint moves accordingly as the *n* points move, the difference of a given field before and after the movement is calculated in one same frame, with the equal-time constraint preserved by introducing the local triad e_a^{μ} with a = 1,2,3

Confluent formulation: Wigner function

• The confluent *n*-pt Wigner transform between *x*-independent variables $y^{a} = e_{\mu}^{a}(x) y^{\mu}$ and q^{a} with a = 1, 2, 3. XA et al, 2212.14029

$$W_n(x;q_1^a,\dots,q_n^a) = \int \prod_{i=1}^n \left(d^3 y_i^a \, e^{-iq_{ia}y_i^a} \right) \, \delta^{(3)}\left(\frac{1}{n} \sum_{i=1}^n y_i^a\right) \bar{G}_n(x+e_a y_1^a,\dots,x+e_a y_n^a)$$

22

Confluent fluctuation evolution equations

• Fluctuation evolution equations in the *impressionistic* form: XA et al, in progress

$$\mathscr{L}W_n = ic_s q(W_n - ...) - \gamma q^2(W_n - ...)$$

sound dissipation

of which the solutions match thermodynamics with entropy $S(m, p, u_{\mu}, \eta)$.

Equilibrium solutions in diagrammatic representation

correlators) to solve -- bite off more than one can chew!

 $-\partial \psi W_n + \dots$ where $\mathscr{L} = u \cdot \overline{\nabla}_x + f \cdot \nabla_q$ background gradient

m: entropy per baryon; *p*: pressure; η : Lagrange multiplier for $u^2 = -1$.

For $\phi = (\delta m, \delta p, \delta u_{\mu})$, there are 21+56+126=**203** equations (for the 2-pt, 3-pt and 4-pt

Rotating phase approximation

• Step 1: choose a set of new bases in Fock space s.t. the ideal hydrodynamic equations are diagonalized with eigenvalues $\lambda_{\pm}(q) = \pm c_s |q|, \lambda_m(q) = \lambda_{(i)}(q) = 0.$

$$\phi = \begin{pmatrix} \phi_m \\ \phi_p \\ \phi_\mu \end{pmatrix} = \begin{pmatrix} \delta m \\ \delta p \\ \delta u_\mu \end{pmatrix} \longrightarrow \Phi = \begin{pmatrix} \Phi_m \\ \Phi_{\pm} \\ \Phi_{(i)} \end{pmatrix} \sim \begin{pmatrix} \delta p \pm e_{\mu} \\ \Phi_{\mu} \\ \Phi_{\mu} \end{pmatrix} = \begin{pmatrix} \phi_m \\ \phi_\mu \\ \phi_\mu \end{pmatrix} = \begin{pmatrix} \phi_m \\ \phi_\mu \end{pmatrix} = \begin{pmatrix} \phi_\mu \\ \phi_\mu \end{pmatrix} =$$

NB: *n*-pt correlators are analogous to *n*-particle quantum states lying in the Fock space.

• Step 2: for *n*-pt correlators $W_{\Phi_1...\Phi_n}(q_1,...,q_n)$,

if $\sum_{i=1}^{n} \lambda_{\Phi_i}(q_i) \begin{cases} = 0 \quad \longrightarrow \quad \text{slow mode (kept)} \\ \neq 0 \quad \longrightarrow \quad \text{fast mode (averaged out)} \end{cases}$

As a result, we end up with 7+10+15=32 equations to solve.

- E.g., $W_{+-}(q_1, q_2)$ is a slow mode since $\lambda_+(q_1) + \lambda_-(q_2) = c_s(|q_1| |q_2|) = 0$; $W_{+++}(q_1, q_2, q_3)$ is not a slow mode since $\lambda_+(q_1) + \lambda_+(q_2) + \lambda_+(q_3) = c_s(|q_1| + |q_2| + |q_3|) \neq 0$.
 - E.g., the 7 independent 2-pt slow modes are W_{mm} , $W_{m(i)}$, $W_{(i)(j)}$, W_{+-} .

Hydro-kinetic equations

"Finally, after about six months of work off and on, all the pieces suddenly fitted together, producing miraculous cancellation, and I was staring at the amazingly simple final result." C.N. Yang

Fluctuation feedback

• Fluctuations give feedback to the bare quantities order by order in gradient expansion:

$$\begin{aligned} T_{\mu\nu}^{\text{physical}} &= \underbrace{T_{\mu\nu}^{(0)} + T_{\mu\nu}^{(1)} + T_{\mu\nu}^{(2)} + \ldots + \underbrace{\delta T_{\mu\nu}(\{G_n\})}_{\text{fluctuation}} \\ &= \underbrace{T_{\mu\nu}^{R(0)} + T_{\mu\nu}^{R(1)} + T_{\mu\nu}^{R(2)} + \underbrace{\widetilde{T}_{\mu\nu}^{(3/2)} + \widetilde{T}_{\mu\nu}^{(3)} + \widetilde{T}_{\mu\nu}^{(9/2)} + \ldots}_{\text{long-time tails}} \end{aligned}$$

$$\text{renormalized} \qquad \text{for } G_n(x) \sim \int d^3 q_1 \ldots d^3 q_n \delta^{(3)}(q_1 + \ldots + q_n) W_n(x, q_1, \ldots, q_n)$$

$$\text{need the solutions from equations for Wigner functions} \end{aligned}$$

$$T_{\mu\nu}^{\text{physical}} = \underbrace{T_{\mu\nu}^{(0)} + T_{\mu\nu}^{(1)} + T_{\mu\nu}^{(2)} + \dots + \delta T_{\mu\nu}(\{G_n\})}_{\text{bare}} \underbrace{\{G_n\}}_{\text{fluctuation}} = \underbrace{T_{\mu\nu}^{R(0)} + T_{\mu\nu}^{R(1)} + T_{\mu\nu}^{R(2)} + \widetilde{T}_{\mu\nu}^{(3/2)} + \widetilde{T}_{\mu\nu}^{(3)} + \widetilde{T}_{\mu\nu}^{(9/2)} + \dots}_{\text{long-time tails}}$$
where $G_n(x) \sim \int d^3q_1 \dots d^3q_n \delta^{(3)}(q_1 + \dots + q_n) W_n(x, q_1, \dots, q_n)$

$$\uparrow$$
need the solutions from equations for Wigner f

Renormalization

 Equation for 2-pt functions under RPA: $\mathscr{L}W(q) = -\gamma q^2 (W(q) - W^{(0)}) - \partial \psi W(q)$

with asymptotic solutions

$$W(q) = \frac{\gamma q^2 W^{(0)}}{-i\omega + \gamma q^2 + \partial \psi} = \begin{cases} W^{(0)} \left(1 - \frac{-i\omega + \partial \psi}{\gamma q^2}\right) \\ W^{(0)} \frac{\gamma q^2}{-i\omega + \partial \psi} \left(1 - \frac{-i\omega + \partial \psi}{-i\omega + \partial \psi}\right) \end{cases}$$

$$W^{(1)} \sim \frac{\partial \psi}{\gamma q^2} \implies G^{(1)} = \int^{\Lambda} d^3 q W^{(1)}$$

E.g.,

$$\eta_{R} = \eta + \frac{T\Lambda}{30\pi^{2}} \left(\frac{1}{\gamma_{L}} + \frac{7}{2\gamma_{\eta}} \right), \quad \zeta_{R} = \zeta + \frac{T\Lambda}{18\pi^{2}} \left(\frac{1}{\gamma_{L}} (1 - 3\dot{T} + 3\dot{c}_{s})^{2} + \frac{2}{\gamma_{\eta}} (1 - 3(\dot{T} + c_{s}^{2})/2)^{2} + \frac{9}{4\gamma_{\lambda}} (1 - \dot{c}_{p})^{2} \right), \quad \lambda_{R} = \lambda + \frac{T^{2}n^{2}\Lambda}{3\pi^{2}w^{2}} \left(\frac{c_{p}T}{(\gamma_{\eta} + \gamma_{\lambda})w} + \frac{1}{2} \frac{c_{p}T}{(\gamma_{\eta} + \gamma_{\lambda})w} + \frac{1}{2} \frac{c_{p}T}{(\gamma_{\eta} + \gamma_{\lambda})w} \right)$$

• Perturbation analysis for $W = W^{(0)} + W^{(neq)}$ where $W^{(neq)} = W^{(1)} + \dots$ gives:

 $\gamma^{(1)} \sim \frac{\Lambda}{2} \partial \psi \longrightarrow \text{renormalize transport coefficients}$ (regularize infinite noise analytically)

Long-time tails

• The remaining non-equilibrium part of 2-pt function: $\widetilde{W} = W^{(\text{neq})} - W^{(1)} \sim \frac{\partial \psi}{-i\omega + \gamma q^2 + \partial \psi} - \frac{\partial \psi}{\gamma q^2}$

$$\implies \widetilde{G} = \int_{q} \widetilde{W} \sim \frac{\partial \psi}{\gamma^{3/2}} (i\omega + \partial \psi)^{1/2} \sim$$

• Generically, for arbitrary n,

$$\widetilde{G}_n(x) = \int \underbrace{d^3q_1 \dots d^3q_n \delta^{(3)}(q_1 + \dots + q_n)}_{n \text{ independent a integration}} \widetilde{W}_n(x, q_1, \dots, q_n) \sim \varepsilon^{n-1} \sim q_*^{3(n-1)} \sim k^{3(n-1)/2}$$

n-1 independent q integration

the leading contribution ($k^{3/2} \sim t^{-3/2}$) results from 2-pt correlators via — () . E.g., $\Pi(\omega) = \zeta(\omega)\partial \cdot u \sim \xi^3 \left(1 - (\omega\xi^3)^{1/2}\right)\partial \cdot u$

Interplay with background in the critical regime

due to critical slowing down. Stephanov, 1104.1627; Berdnikov et al, 9912274; XA, 2003.02828

E.g., for $\Gamma(q) = Dq^2 = \lambda \alpha' q^2$ where $\lambda \sim \xi$, α

$$\begin{cases} \partial_{\mu} T^{\mu\nu}_{\text{physical}} (\psi_{R}) \\ \widetilde{\mathscr{L}} \widetilde{W}(q) = -1 \end{cases}$$

• In the critical regime ($\Gamma_{\Pi} \sim \xi^{-3}$), Muller-Israel-Stewart theory is an example of the single-mode Hydro+, e.g., Stephanov et al, 1712.10305; Du et al, 2107.02302; Abbasi et al, 2112.14747

$$\begin{cases} \partial_{\mu} T^{\mu\nu} (\psi, \Pi) \\ \dot{\Pi} = -\Gamma_{\Pi} (\Pi) \end{cases}$$

Different slow modes may relax with different time scales near critical point

$$\alpha' \sim \xi^{-2}$$
, we have $\tau_{rel} = 1/\Gamma(\xi^{-1}) \sim \xi^3$.

• Hydro+/++: hydrodynamics with parametrically slow modes (e.g., $\Gamma(q) \sim \xi^{-3} \ll \omega$)

- $\widetilde{W}) = 0$
- $\Gamma(q)\widetilde{W}(q) \partial \psi_R \widetilde{W}(q)$

- $I \Pi_{NS}$)

Recap

- its own pros and cons, and can be connected with others.
- dynamics, and formulated it covariantly for hydrodynamics.

Outlook

- Hydrodynamic attractors. Work in progress with Spalinski
- Numerical implementation? We need efforts from the community!

Various approaches for fluctuating hydro have been developed, each with

For the first time we developed a deterministic framework for fluctuation

• Other fluid system: cosmo/astrophysics, SHD/MHD, etc. Extendable to many problems!