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The model of flavourThe model of flavour
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S.F.King, JHEP 09 (2018) 069

Standard Model New Physics: VL fermions + 2 scalars

● SM Yukawa couplings forbidden 
by global U(1)

● Masses generated via mixing with 
vector-like NP fermions

● A lot of NP parameters (Yukawa 
couplings and VL masses)…

● … but constrained by the SM

COMPLEX … BUT STILL MINIMAL



Fermion massesFermion masses
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3rd and 2nd generations of the SM:

1st generation is massless with 1 VL family
can be easily extended by another VL: A.C.Hernández, S.F.King, and H.Lee, Phys. Rev. D 103, 115024 (2021)

large to fit the top mass

small to fit the charm mass

Vector-like NP fermions:

S.F.King, JHEP 09 (2018) 069
A.Cárcamo Hernández, KK, H.Lee, D.Rizzo, arXiv:2309.13968

Colored VL fermions heavier than 1400 GeV (LHC bounds) 

● Neutrinos 1,2 can be the 
lightest (DM?)

● Neutrinos 3,4 mass 
degenerate with charged VL 
leptons

vu/vd >> 1 to get mt >> mb



CKM mixing matrixCKM mixing matrix
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A.Cárcamo Hernández, KK, H.Lee, D.Rizzo 
arXiv:2309.13968

5x5 mixing matrix       3x3 CKM matrix  
  

● to fit the Cabibbo angle

● to fit V13 one needs  

order one

difficult to fit with
1 VL family

Comparing with the experiment:   

1 extra VL family needed



PhenomenologyPhenomenology
Studied in the context of ...
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Flavor anomalies in b→ s transitions

Muon g-2 anomaly

Flavour Changing Neutral Currents

S.F.King, JHEP 09, 069 (2018)
H.Lee, A.Cárcamo Hernández, arXiv: 2207.01710

H.Lee, A.Cárcamo Hernández (2022), 2207.01710.
A.Cárcamo Hernández, S.F.King, H.Lee, S.J.Rowley, Phys. Rev. D 101, 115016 (2020)
A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

A.C.Hernández, S.F.King, H.Lee, Phys. Rev. D 105, 015021 (2022)



PhenomenologyPhenomenology
Studied in the context of ...

… but many things were wrong
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Flavor anomalies in b→ s transitions

Muon g-2 anomaly

Flavour Changing Neutral Currents

S.F.King, JHEP 09, 069 (2018)
H.Lee, A.Cárcamo Hernández, arXiv: 2207.01710

H.Lee, A.Cárcamo Hernández (2022), 2207.01710.
A.Cárcamo Hernández, S.F.King, H.Lee, S.J.Rowley, Phys. Rev. D 101, 115016 (2020)
A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

A.C.Hernández, S.F.King, H.Lee, Phys. Rev. D 105, 015021 (2022)

● Scalar potential ``boundedness from below’’ 

● Alignment limit (the lightest scalar is the SM Higgs)

● Perturbativity of the Yukawa and scalar couplings

● Caluclation of the NP contrbution to muon g-2

needs to be redone
A.Cárcamo Hernández, KK, H.Lee, D.Rizzo
arXiv:2309.13968



Scalar sector constraintsScalar sector constraints

quartic couplings determine 
the shape of scalar potential
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V must be bounded
from below

3 neutral scalar fields from diagonalization of: h1, h2, h3

alignment limit:
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RGE perturbativity boundsRGE perturbativity bounds
Naive perturbativity: 

gauge,Yukawa coupling (NP) < √4π
quartic coupling (NP) < 4π

for the lagrangian parameters

the problem: 
NP must be an effective theory → UV completion required at the energy scale close to NP

would affect pheno predictions

RGE perturbativity: 

gauge,Yukawa coupling (Ʌ) < √4π
quartic coupling (Ʌ) < 4π

gauge,Yukawa coupling (NP) < 1
quartic coupling (NP) < 2

UV completion does not affect
NP-scale pheno (muon g-2)

the scale of UV completion
must be above ~ 50 TeV

energy

co
up

lin
g

quartic ~ 10

breakdow
n of perturbation 
theory



Measured value at BNL (2006):
 Bennet et al, Phys. Rev. D 73 (2006) 072003 (hep-ex/0602035)

discrepancy at ~ 5.1 σ!

Muon Muon g-2g-2 anomaly  anomaly 

Measured value at FNAL (2021):
Muon g-2 Collaboration, Phys. Rev. Lett. 126 (2021) 141801
Muon g-2 Collaboration, arXiv: 2308.06230

New Physics?
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BUT BE(A)WARE OF THE LATTICE

H.Wittig, arXiv:2306.04165
hadronic vacuum polarisation 
contribution 
underestimated?

tension with the data-driven 
dispersive methods of 2-4 σ 
New Anomaly?

muon (g-2) anomaly reduced to 1.5-2 σ

Muon Muon g-2g-2 anomaly  anomaly 



● minimal: 1 VL lepton and 1 scalar 
●

● Yukawa couplings > 1
● excluded by the LHC
● Landau Pole 

● at least two reps. of VL needed
● parametrically enhanced 
● LHC bounds easily avoided...

x

x

1-loop contribution from scalar(s)       and VL fermions       
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see P. Athron et al., 2104.03691 
for the most recent results

g-2 with scalars and fermions  g-2 with scalars and fermions  

e.g. KK. E.Sessolo, 1707.00753 
      
      We have VL lepton SU(2) 

doublet and singlet
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Scanning methodologyScanning methodology
Input parameters:

We minimize the χ2 function:
● SM fermions masses
● CKM matrix angles
● Muon g-2

benchmark 
points
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Typical NP spectraTypical NP spectra
Fermion sector:

Scalar sector:

neutral scalars pseudo-scalars charged scalars

h1: 125 GeV

h2: ~400 GeV

h3: ~600-800 GeV

a1: ~400 GeV

a2: ~450-600 GeV

h± : ~400 GeV

scalar masses determined by muon g-2

VL quarks VL leptons

U1: ~1500 GeV

D1: ~1500 GeV

U2: ~1700-1900 GeV

D2: ~2900-3600 GeV

N1,2: ~200 GeV

N3,4: ~500-600 GeV

E1: ~500-600 GeV

E2: ~550-650 GeV

masses determined by fitting the SM (neutrino) masses determined by muon g-2

to suppress xd (CKM)

set by MQ

set by M L
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LHC?
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LHC bounds LHC bounds 
decay predominantly to muons … but no dedicated experimental analysis

VL leptons:

BR to taus low (<10%) … cross section 3-4 orders of magnitude
                                          below the current bounds

NP scalars:

ATLAS: JHEP 07, 118 (2023)
CMS: Phys. Rev. D 100, 052003 (2019)

most promissing 
channel

predicted CS
experimental95% CS= 0.6 can be tested in Run 3

VL quarks: ATLAS: Eur. Phys. J. C 83, 719 (2023)
CMS: JHEP 07, 020 (2023)

cross section one order of magnitude 
smaller than the current bounds 
can be tested in Run 3
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NP contributions to muon g-2NP contributions to muon g-2

Dominant contribution from the charged scalar-neutrino loops
NP neutrino Yukawa couplings not constrained by the SM – can become large 

Cancellations between the (pseudo) scalar-charged lepton loops

Not caluclated in the 
prevous studies of 
the model ...

ex: L. Darmé, K. Kowalska, L. Roszkowski, and E. M. Sessolo, JHEP 10, 052 (2018)
      K. Kowalska and E. M. Sessolo, Phys. Rev. D 103, 115032 (2021)



● NP model to explain the SM fermion masses and mixings

● Strong constraints on the Yukawa couplings from 
perturbativity

● Heavy neutrino-charged scalar contribution to muon g-2 is 
dominant

● Possible discovery/exclusion in the VL quark and scalar tau-
channel Run 3 LHC searches

To take homeTo take home
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Muon g-2 measurementMuon g-2 measurement
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muon spin precession frequency

step 1: measure magnetic field 

step 2: measure precession frequency

Brendan Kiburg,
talk at the University of Warsaw 
Colloquium momentum

spin

relative precession frequency of the spin 
with respect to the momentum

parity not 
conserved → 
positrons emitted 
in the direction 
correlated to the 
spin

fit to get ωa 



Muon Muon g-2g-2 - theory    - theory   

in quantum mechanics: g = 2

in QFT loop effects can shift g

QED

anomalous magnetic moment:

EW HAD VP HAD LBL

Aoyama, Kinoshota, Nio, Atoms 7 (2019) 28
Standard Model value:

subject to 
uncertainties 
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