Naturally small neutrino mass from asymptotic safety

Enrico Maria Sessolo

National Centre for Nuclear Research (NCBJ) Warsaw, Poland

> Based on JHEP 08 (2022) 262 (2204.00866) and 2308.06114 (accepted in JHEP)

in collaboration with Abhishek Chikkaballi, Kamila Kowalska, Soumita Pramanick

2PiNTS Kraków

23.11.2023

Neutrino mass

Neutrino masses are very small !

... either Dirac neutrino ...

RHN → Higgs mechanism → Small Yukawa

$$\mathcal{L}_D = -y_{\nu}^{ij} \nu_{R,i} (H^c)^{\dagger} L_j + \text{H.c.}$$

$$m_{\nu} = \frac{y_{\nu}v_H}{\sqrt{2}}$$

Neutrino mass

Neutrino masses are very small !

1 parameter MN

An alternative dynamical mechanism and its signatures

Renormalization group flow

Charge-screening by quantum fluctuations \rightarrow running coupling constants, $g(\mu)$

Scaling properties of g

 $M_{ij} = \partial eta_i / \partial lpha_j |_{\{lpha_i^*\}}$ (-) eigenvalue (critical exponent): heta > 0

M.Yamada, HECA seminar, 08.10.2019

Relevant couplings are free parameters

Scaling properties of g

 $M_{ij}=\partialeta_i/\partiallpha_j|_{\{lpha_i^*\}}$ (-) eigenvalue (critical exponent): heta < 0

M.Yamada, HECA seminar, 08.10.2019

Irrelevant couplings provide predictions

Enrico Maria Sessolo

Asymptotically safe gravity

Quantum gravity might feature interactive UV fixed points (functional renormalization group)

Reuter '96, Reuter, Saueressig '01, Litim '04, Codello, Percacci, Rahmede '06, Benedetti, Machado, Saueressig '09, Narain, Percacci '09, Manrique, Rechenberger, Saueressig '11, Falls, Litim, Nikolakopoulos '13, Dona', Eichhorn, Percacci '13, Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Zanusso *et al.* '09 ... many more

EAA e.g. Einstein-Hilbert action

$$\Gamma_k = \frac{1}{16\pi G} \int d^4x \sqrt{g} \left[-R(g) + 2\Lambda \right]$$

FRG (Wetterich equation)

$$\partial_t \Gamma_k = k \,\partial_k \Gamma_k = \frac{1}{2} \operatorname{Tr}\left(\frac{1}{\Gamma_k^{(2)} + \mathcal{R}_k} \partial_t \mathcal{R}_k\right)$$

Beta functions of grav. couplings

$$\begin{split} \tilde{G} &= G(k)k^2 \\ \tilde{\Lambda} &= \Lambda(k)k^{-2} \\ t &= \ln k \\ \end{split}$$

$$\begin{split} \frac{d\tilde{G}}{dt} &= \left[2 + \tilde{G}\eta_1(\tilde{G},\tilde{\Lambda})\right]\tilde{G} &= \mathbf{0} \\ \frac{d\tilde{\Lambda}}{dt} &= -2\tilde{\Lambda} + \tilde{G}\eta_2(\tilde{G},\tilde{\Lambda}) \\ \end{array}$$

Reuter, Saueressig, hep-th/0110054

2 relevant fixed points

... fixed points persist under the addition of gravity and matter interactions

Matter RGEs with quantum gravity

Christiansen, Eichhorn '17, Christiansen *et al.* '17, Shaposhnikov, Wetterich '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16, Wetterich, Yamada '16, Hamada, Yamada '17, Pawlowski *et al.* '18, Eichhorn, Versteegen '17, Eichhorn, Held '17-'18, Pastor-Gutiérrez, Pawlowski, Reichert '22, ...

Trans-Planckian corrections of matter RGEs $k > M_{Pl}$ (functional renormalization group)

SM gauge couplings

universal corrections depend on gravity fixed points

SM Yukawa couplings

 $\frac{dg_3}{dt} = -\frac{g_3^3}{16\pi^2} 7 - fg \ g3$

$$\frac{dy_t}{dt} = \frac{y_t}{16\pi^2} \left(\frac{9}{2} y_t^2 + \frac{3}{2} y_b^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{17}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - \mathbf{fy} \ \mathbf{yt}$$

$$\frac{dy_b}{dt} = \frac{y_b}{16\pi^2} \left(\frac{9}{2} y_b^2 + \frac{3}{2} y_t^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{5}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - \mathbf{fy} \ \mathbf{yb} \qquad \dots$$

... same for other quarks and leptons

Enrico Maria Sessolo

Matter RGEs with quantum gravity

Christiansen, Eichhorn '17, Christiansen *et al.* '17, Shaposhnikov, Wetterich '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16, Wetterich, Yamada '16, Hamada, Yamada '17, Pawlowski *et al.* '18, Eichhorn, Versteegen '17, Eichhorn, Held '17-'18, Pastor-Gutiérrez, Pawlowski, Reichert '22, ...

Trans-Planckian corrections of matter RGEs $k > M_{Pl}$ (functional renormalization group)

SM gauge couplings

universal corrections depend on gravity fixed points

$$\begin{aligned} \frac{dg_Y}{dt} &= \frac{g_Y^3}{16\pi^2} \frac{41}{6} - \mathbf{fg} \ \mathbf{gY} = \mathbf{0} \\ \frac{dg_2}{dt} &= -\frac{g_2^3}{16\pi^2} \frac{19}{6} - \mathbf{fg} \ \mathbf{g2} = \mathbf{0} \\ \frac{dg_3}{dt} &= -\frac{g_3^3}{16\pi^2} 7 - \mathbf{fg} \ \mathbf{g3} = \mathbf{0} \end{aligned} \qquad f_g = \tilde{G}^* \frac{1 - 4\tilde{\Lambda}^*}{4\pi \left(1 - 2\tilde{\Lambda}^*\right)^2}, \qquad f_y = -\tilde{G}^* \frac{96 + \tilde{\Lambda}^* \left(-235 + 103\tilde{\Lambda}^* + 56\tilde{\Lambda}^{*2}\right)}{12\pi \left(3 - 10\tilde{\Lambda}^* + 8\tilde{\Lambda}^{*2}\right)^2} \\ \frac{dg_3}{dt} &= -\frac{g_3^3}{16\pi^2} 7 - \mathbf{fg} \ \mathbf{g3} = \mathbf{0} \end{aligned}$$

SM Yukawa couplings

$$\frac{dy_t}{dt} = \frac{y_t}{16\pi^2} \left(\frac{9}{2} y_t^2 + \frac{3}{2} y_b^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{17}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - \mathbf{fy} \ \mathbf{yt} = \mathbf{0}$$

$$\frac{dy_b}{dt} = \frac{y_b}{16\pi^2} \left(\frac{9}{2} y_b^2 + \frac{3}{2} y_t^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{5}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - \mathbf{fy} \ \mathbf{yb} = \mathbf{0}$$

... same for other quarks and leptons

Enrico Maria Sessolo

2PiNTS Kraków 2023

get fixed points

Matter RGEs with quantum gravity

Christiansen, Eichhorn '17, Christiansen *et al.* '17, Shaposhnikov, Wetterich '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16, Wetterich, Yamada '16, Hamada, Yamada '17, Pawlowski *et al.* '18, Eichhorn, Versteegen '17, Eichhorn, Held '17-'18, Pastor-Gutiérrez, Pawlowski, Reichert '22, ...

Trans-Planckian corrections of matter RGEs $k > M_{Pl}$ (functional renormalization group)

SM gauge couplings

universal corrections depend on gravity fixed points

$$\frac{dg_Y}{dt} = \frac{g_Y^3}{16\pi^2} \frac{41}{6} - fg \ gY = 0$$

$$\frac{dg_2}{dt} = -\frac{g_2^3}{16\pi^2} \frac{19}{6} - fg \ g2 = 0$$

$$\frac{dg_3}{dt} = -\frac{g_3^3}{16\pi^2} 7 - fg \ g3 = 0$$
Very large theory uncertainties!
(truncation in number of operators, cut-off scheme dependence, gauge f king, etc.)

SM Yukawa couplings

$$\frac{dy_t}{dt} = \frac{y_t}{16\pi^2} \left(\frac{9}{2} y_t^2 + \frac{3}{2} y_b^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{17}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - \mathbf{fy} \ \mathbf{yt} = \mathbf{0}$$

$$\frac{dy_b}{dt} = \frac{y_b}{16\pi^2} \left(\frac{9}{2} y_b^2 + \frac{3}{2} y_t^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{5}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - \mathbf{fy} \ \mathbf{yb} = \mathbf{0}$$

get fixed points

... same for other quarks and leptons

Enrico Maria Sessolo

Fixed points of SM + RHN:

K.Kowalska, S.Pramanick, EMS, 2204.00866

$$\begin{aligned} \frac{dg_Y}{dt} &= \frac{g_Y^3}{16\pi^2} \frac{41}{6} - f_g \, g_Y = \mathbf{0} \\ \frac{dy_t}{dt} &= \frac{y_t}{16\pi^2} \left[\frac{9}{2} y_t^2 + y_\nu^2 - \frac{17}{12} g_Y^2 \right] - f_y \, y_t = \mathbf{0} \\ \frac{dy_\nu}{dt} &= \frac{y_\nu}{16\pi^2} \left[3y_t^2 + \frac{5}{2} y_\nu^2 - \frac{3}{4} g_Y^2 \right] - f_y \, y_\nu = \mathbf{0} \end{aligned}$$

Enrico Maria Sessolo

Fixed points of SM + RHN:

K.Kowalska, S.Pramanick, EMS, 2204.00866

$$\begin{aligned} \frac{dg_Y}{dt} &= \frac{g_Y^3}{16\pi^2} \frac{41}{6} - f_g \, g_Y = \mathbf{0} \\ \frac{dy_t}{dt} &= \frac{y_t}{16\pi^2} \left[\frac{9}{2} y_t^2 + y_\nu^2 - \frac{17}{12} g_Y^2 \right] - f_y \, y_t = \mathbf{0} \\ \frac{dy_\nu}{dt} &= \frac{y_\nu}{16\pi^2} \left[3y_t^2 + \frac{5}{2} y_\nu^2 - \frac{3}{4} g_Y^2 \right] - f_y \, y_\nu = \mathbf{0} \end{aligned}$$

Enrico Maria Sessolo

A dynamical mechanism!

Integrate the curve:

$$y_{\nu}(t,\kappa) \approx \sqrt{\frac{16\pi^2(f_{\text{crit}} - f_y)}{e^{(f_{\text{crit}} - f_y)(16\pi^2\kappa - t)} + 5/2}}$$

16 \pi^2\kappa = "distance" in e-folds

No fine tuning:

Smallness of the neutrino Yukawa due to the "distance" of the Planck scale from infinity

Neutrinos can be Dirac naturally

Alternative to the see-saw mechanism

Connections to quantum gravity

SM+RHN+QG:

neutrino crit. exponent must be negative

Quantum gravity calculation should eventually match the blue line

(FRG calculation following *A. Eichhorn, F.Versteegen,* 1709.07252)

Connections to quantum gravity

gauged U(1)B-L + QG

and g_{Y} role now played by...

 $g_{V}^{*} = 0$ (rel.)

extended gauge sector:

$$\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\epsilon}{2} B_{\mu\nu} X^{\mu\nu} + i \bar{f} \left(\partial^{\mu} - i g_Y Q_Y \tilde{B}^{\mu} - i g_{B-L} Q_{B-L} \tilde{X}^{\mu} \right) \gamma_{\mu} f$$

Quantum gravity calculation provides predictions for *gx*, *gɛ*

(FRG calculation following *A. Eichhorn, F.Versteegen,* 1709.07252)

Predictions *B***-***L*

- New gauge sector *gx*, *gε* (irr.)
- New Yukawa coupling *y* $\mathcal{L}_M = -y_N^{ij} S \nu_{R,i} \nu_{R,j} + \text{H.c.}$ (Majorana mass term) (irr.)
- New scalar vev vs breaking U(1)B-L (rel.)

Different fg, fy lead to predictive (irrel.) fixed points for gx, ge, yN:

	f_g	f_y	g_X^*	g_{ϵ}^*	y_N^*	$g_X (10^{5,7,9} \mathrm{GeV})$	$g_{\epsilon} \left(10^{5,7,9} \mathrm{GeV} \right)$	$y_N (10^{5,7,9} \mathrm{GeV})$	
BP1	0.01	0.0005	0.10	-0.55	0.12	0.29, 0.29, 0.30	-0.26, -0.27, -0.28	0.16, 0.16, 0.16	Majorana
BP2	0.05	-0.005	0.70	-1.32	0.47	0.40, 0.41, 0.44	-0.52, -0.56, -0.61	0.42, 0.44, 0.45	Majorana
BP3	0.02	-0.0015	0.10	-0.75	0.0	0.12, 0.12, 0.12	-0.33, -0.35, -0.37	0.0	Dirac
BP4	0.03	-0.004	0.10	0.75	0.0	0.09, 0.09, 0.09	0.23, 0.25, 0.28	0.0	Dirac

A. Chikkaballi, K.Kowalska, EMS, 2308.06114

(large kinetic mixing implies vs >> vH)

Predictions B-L

Possible gravitational-wave (GW) signatures from FOPT?

BP2

BP3

0.40, 0.41, 0.44

0.12, 0.12, 0.12

0.42, 0.44, 0.45

0.0

predictions have strong discriminating features... may show up in GW amplitude!

Signal dependence on pars. is well known if C-W pot. is "conformal" ...

Scale-invariant potential confronts asymptotic safety...

Gravitational waves

Signal is now visible...

... but discriminating features washed-out by the scalar masses

To take home...

- AS was used to make the neutrino (or other) Yukawa coupling arbitrarily small dynamically
- Mechanism relies on an **irrelevant Gaussian fixed point** of the trans-Planckian RG flow of Yukawa coupling
- In the SM + QG **some tension** between the FRG results and phenomenology, but perhaps not so in gauged *B-L*
- Gravitational wave signatures from FOPTs
- Majorana/Dirac discrimination via gravitational waves from FOPTs is enticing but **not possible**.

Predictions from trans-Planckian AS

• FRG calculation of *fg*, *fy* has very large uncertainties... (truncation in number of operators, cut-off scheme dependence, etc.)

Lauscher, Reuter '02, Codello, Percacci, Rahmede '07-'08, Benedetti, Machado, Saueressig '09, Narain, Percacci '09, Dona', Eichhorn, Percacci '13, Falls, Litim, Schroeder '18 ...

• FRG calculation is *not required* to get predictions...

Wetterich, Shaposhnikov '09, Eichhorn, Held '18, Reichert, Smirnov '19; Alkofer *et al.* '20, Kowalska, EMS, Yamamoto '20, Kowalska, EMS '21, Chikkaballi, Kotlarski, Kowalska, Rizzo, EMS '22...

AS leads to testable signatures ...

e.g. in flavor anomalies: *Kowalska, EMS, Yamamoto,* Eur.Phys.J.C 81 (2021) 4, 272 *Chikkaballi, Kotlarski, Kowalska, Rizzo, EMS,* JHEP 01 (2023) 164

in g-2 and DM: Kowalska, EMS, Phys. Rev. D 103, 115032 (2021)

... and neutrinos! (this talk)

Enrico Maria Sessolo

Lepton sector RGEs

$$\frac{dy_e}{dt} = \frac{y_e}{16\pi^2} \left\{ \frac{3}{2} y_e^2 - \frac{3}{2} \left[X y_{\nu 1}^2 + Y y_{\nu 2}^2 + (1 - X - Y) y_{\nu 3}^2 \right] + y_e^2 + y_{\mu}^2 + y_{\tau}^2 + y_{\nu 1}^2 + y_{\nu 2}^2 + y_{\nu 3}^2 - \left(\frac{15}{4} g_Y^2 + \frac{9}{4} g_2^2 \right) + 3 \left(y_t^2 + y_b^2 \right) \right\} - f_y y_e$$
(A.9)

$$\frac{dy_{\mu}}{dt} = \frac{y_{\mu}}{16\pi^2} \left\{ \frac{3}{2} y_{\mu}^2 - \frac{3}{2} \left[Zy_{\nu 1}^2 + Wy_{\nu 2}^2 + (1 - Z - W)y_{\nu 3}^2 \right] + y_e^2 + y_{\mu}^2 + y_{\tau}^2 + y_{\nu 1}^2 + y_{\nu 2}^2 + y_{\nu 3}^2 - \left(\frac{15}{4} g_Y^2 + \frac{9}{4} g_2^2 \right) + 3 \left(y_t^2 + y_b^2 \right) \right\} - f_y y_{\mu}$$
(A.10)

$$\frac{dy_{\tau}}{dt} = \frac{y_{\tau}}{16\pi^2} \left\{ \frac{3}{2} y_{\tau}^2 - \frac{3}{2} \left[(1 - X - Z) y_{\nu 1}^2 + (1 - Y - W) y_{\nu 2}^2 + (X + Y + Z + W - 1) y_{\nu 3}^2 \right] + y_e^2 + y_{\mu}^2 + y_{\tau}^2 + y_{\nu 1}^2 + y_{\nu 2}^2 + y_{\nu 3}^2 - \left(\frac{15}{4} g_Y^2 + \frac{9}{4} g_2^2 \right) + 3 \left(y_t^2 + y_b^2 \right) \right\} - f_y y_{\tau} \quad (A.11)$$

$$\frac{dy_{\nu 1}}{dt} = \frac{y_{\nu 1}}{16\pi^2} \left\{ \frac{3}{2} y_{\nu 1}^2 - \frac{3}{2} \left[X y_e^2 + Z y_\mu^2 + (1 - X - Z) y_\tau^2 \right] + y_e^2 + y_\mu^2 + y_\tau^2 + y_{\nu 1}^2 + y_{\nu 2}^2 + y_{\nu 3}^2 - \left(\frac{3}{4} g_Y^2 + \frac{9}{4} g_2^2 \right) + 3 \left(y_t^2 + y_b^2 \right) \right\} - f_y y_{\nu 1}$$
(A.12)

$$\frac{dy_{\nu 2}}{dt} = \frac{y_{\nu 2}}{16\pi^2} \left\{ \frac{3}{2} y_{\nu 2}^2 - \frac{3}{2} \left[Y y_e^2 + W y_\mu^2 + (1 - Y - W) y_\tau^2 \right] + y_e^2 + y_\mu^2 + y_\tau^2 + y_{\nu 1}^2 + y_{\nu 2}^2 + y_{\nu 3}^2 - \left(\frac{3}{4} g_Y^2 + \frac{9}{4} g_2^2 \right) + 3 \left(y_t^2 + y_b^2 \right) \right\} - f_y y_{\nu 2}$$
(A.13)

$$\frac{dy_{\nu3}}{dt} = \frac{y_{\nu3}}{16\pi^2} \left\{ \frac{3}{2} y_{\nu3}^2 - \frac{3}{2} \left[(1 - X - Y) y_e^2 + (1 - Z - W) y_\mu^2 + (X + Y + Z + W - 1) y_\tau^2 \right] + y_e^2 + y_\mu^2 + y_\tau^2 + y_{\nu1}^2 + y_{\nu2}^2 + y_{\nu3}^2 - \left(\frac{3}{4} g_Y^2 + \frac{9}{4} g_2^2 \right) + 3 \left(y_t^2 + y_b^2 \right) \right\} - f_y y_{\nu3} \quad (A.14)$$

$$\begin{aligned} \frac{dX}{dt} &= -\frac{3}{(4\pi)^2} \left[\left(\frac{y_e^2 + y_\mu^2}{y_e^2 - y_\mu^2} \right) \left\{ (y_{\nu_1}^2 - y_{\nu_3}^2) XZ + \frac{(y_{\nu_3}^2 - y_{\nu_2}^2)}{2} [W(1 - X) + X - (1 - Y)(1 - Z)] \right\} \\ &+ \left(\frac{y_e^2 + y_\tau^2}{y_e^2 - y_\tau^2} \right) \left\{ (y_{\nu_1}^2 - y_{\nu_3}^2) X(1 - X - Z) + \frac{(y_{\nu_3}^2 - y_{\nu_2}^2)}{2} [(1 - Y)(1 - Z) - X(1 - 2Y) - W(1 - X)] \right\} \\ &+ \left(\frac{y_{\nu_1}^2 + y_{\nu_2}^2}{y_{\nu_1}^2 - y_{\nu_2}^2} \right) \left\{ (y_e^2 - y_\tau^2) XY + \frac{(y_\tau^2 - y_\mu^2)}{2} [W(1 - X) + X - (1 - Y)(1 - Z)] \right\} \\ &+ \left(\frac{y_{\nu_1}^2 + y_{\nu_3}^2}{y_{\nu_1}^2 - y_{\nu_3}^2} \right) \left\{ (y_e^2 - y_\tau^2) X(1 - X - Y) + \frac{(y_\tau^2 - y_\mu^2)}{2} [(1 - Y)(1 - Z) - X(1 - 2Z) - W(1 - X)] \right\} \right] \\ &+ \left(\frac{y_{\nu_1}^2 + y_{\nu_3}^2}{y_{\nu_1}^2 - y_{\nu_3}^2} \right) \left\{ (y_e^2 - y_\tau^2) X(1 - X - Y) + \frac{(y_\tau^2 - y_\mu^2)}{2} [(1 - Y)(1 - Z) - X(1 - 2Z) - W(1 - X)] \right\} \right] \\ &\quad (A.15) \end{aligned}$$

$$\begin{aligned} \frac{dZ}{dt} &= -\frac{3}{(4\pi)^2} \left[\left(\frac{y_{\mu}^2 + y_e^2}{y_{\mu}^2 - y_e^2} \right) \left\{ (y_{\nu 1}^2 - y_{\nu 3}^2) XZ + \frac{(y_{\nu 3}^2 - y_{\nu 2}^2)}{2} [W(1 - X) + X - (1 - Y)(1 - Z)] \right\} \\ &+ \left(\frac{y_{\mu}^2 + y_{\tau}^2}{y_{\mu}^2 - y_{\tau}^2} \right) \left\{ (y_{\nu 1}^2 - y_{\nu 3}^2) Z(1 - X - Z) + \frac{(y_{\nu 2}^2 - y_{\nu 3}^2)}{2} [W(1 - X - 2Z) + X - (1 - Y)(1 - Z)] \right\} \\ &+ \left(\frac{y_{\mu 1}^2 + y_{\nu 2}^2}{y_{\mu 1}^2 - y_{\nu 2}^2} \right) \left\{ \frac{(y_e^2 - y_{\tau}^2)}{2} [(1 - Y)(1 - Z) - X - W(1 - X)] + (y_{\mu}^2 - y_{\tau}^2) ZW \right\} \\ &+ \left(\frac{y_{\mu 1}^2 + y_{\nu 3}^2}{y_{\nu 1}^2 - y_{\nu 3}^2} \right) \left\{ \frac{(y_{\tau}^2 - y_e^2)}{2} [(1 - Z)(1 - Y) - W(1 - X) - X(1 - 2Z)] + (y_{\mu}^2 - y_{\tau}^2) Z(1 - Z - W) \right\} \right]$$
(A.17)

$$\begin{split} \frac{dW}{dt} &= -\frac{3}{(4\pi)^2} \left[\left(\frac{y_{\mu}^2 + y_{e}^2}{y_{\mu}^2 - y_{e}^2} \right) \left\{ (y_{\nu 2}^2 - y_{\nu 3}^2) WY + \frac{(y_{\nu 3}^2 - y_{\nu 1}^2)}{2} [W(1 - X) + X - (1 - Y)(1 - Z)] \right\} \\ &+ \left(\frac{y_{\mu}^2 + y_{\tau}^2}{y_{\mu}^2 - y_{\tau}^2} \right) \left\{ (y_{\nu 2}^2 - y_{\nu 3}^2) W(1 - Y - W) + \frac{(y_{\nu 3}^2 - y_{\nu 1}^2)}{2} [(1 - Y)(1 - Z) - X - W(1 - X - 2Z)] \right\} \\ &+ \left(\frac{y_{\nu 2}^2 + y_{\nu 1}^2}{y_{\nu 2}^2 - y_{\nu 1}^2} \right) \left\{ (y_{\mu}^2 - y_{\tau}^2) WZ + \frac{(y_{\tau}^2 - y_{e}^2)}{2} [(1 - X)W + X - (1 - Y)(1 - Z)] \right\} \\ &+ \left(\frac{y_{\nu 2}^2 + y_{\nu 3}^2}{y_{\nu 2}^2 - y_{\nu 3}^2} \right) \left\{ (y_{\mu}^2 - y_{\tau}^2) W(1 - Z - W) + \frac{(y_{\tau}^2 - y_{e}^2)}{2} [(1 - Y)(1 - Z) - X - W(1 - X - 2Y)] \right\} \right]. \end{split}$$
(A.18)

Enrico Maria Sessolo

2PiNTS Kraków 2023

19

Couple of comments...

1. Asymp. safe SM full fit works (with normal ordering) Ζ 1.000 X PMNS parametrization 0.500 $U_{2} = |U_{\alpha i}|^{2} = \begin{bmatrix} X & Y & 1 - X - Y \\ Z & W & 1 - Z - W \\ 1 - X - Z & 1 - Y - W & X + Y + Z + W - 1 \end{bmatrix} \qquad \begin{array}{l} \theta_{12} = \arctan\sqrt{\frac{Y}{X}} \\ \theta_{13} = \arccos\sqrt{X + Y} \\ \theta_{23} = \arcsin\sqrt{\frac{1 - W - Z}{X + Y}} \end{array}$ y_{ν_3} V 0.100 W 0.050 0.010 $\delta = \arccos \frac{(X+Y)^2 Z - Y(X+Y+Z+W-1) - X(1-W-Z)(1-X-Y)}{2\sqrt{XY(1-X-Y)(1-Z-W)(X+Y+Z+W-1)}}$ 0.005 PMNS fit 0.001 130 000 135 000 140 000 145 000

 $X \in [0.64 - 0.71]$ $Y \in [0.26 - 0.34]$ $Z \in [0.05 - 0.26]$ $W \in [0.21 - 0.48]$

2. The mechanism is more generic than SM

e.g. dark gauge coupling g_D + Yukawa interactions

$$\mathcal{L} \supset Y_S \, \chi_R \Phi \chi_L + Y_L \, \psi_R \Phi \psi_L + ext{H.c.}$$

 $Q_\psi \gg Q_\chi \quad ext{(dark abelian charge)}$

Can use it to justify freeze-in, feebly interacting models, etc...

Log[k/GeV]

Benchmark points of *B***-***L*

Enrico Maria Sessolo

Gravitational wave signal

$$\alpha = \frac{\Delta V(T) - T \frac{\partial \Delta V(T)}{\partial T}}{\rho_R(T)}\Big|_{T_p} \qquad \qquad \frac{\beta}{H_*} = T_p \frac{\mathrm{d}(S_3/T)}{\mathrm{d}T}\Big|_{T_p} \qquad \qquad T_{\mathrm{rh}} = T_p [1 + \alpha(T_p)]^{1/4}$$

$$\begin{split} h^2 \Omega_{\rm coll}^{\rm peak} &= 1.67 \times 10^{-5} \,\kappa_{\rm coll}^2 \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{v_w}{\beta/H_*}\right)^2 \left(\frac{100}{g_*}\right)^{1/3} \left(\frac{0.11 v_w}{0.42 + v_w^2}\right) \\ h^2 \Omega_{\rm sw}^{\rm peak} &= 2.65 \times 10^{-6} \,\kappa_{\rm sw}^2 \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{v_w}{\beta/H_*}\right) \left(\frac{100}{g_*}\right)^{1/3} \\ h^2 \Omega_{\rm turb}^{\rm peak} &= 3.35 \times 10^{-4} \,\kappa_{\rm turb}^{3/2} \left(\frac{\alpha}{1+\alpha}\right)^{3/2} \left(\frac{v_w}{\beta/H_*}\right) \left(\frac{100}{g_*}\right)^{1/3} \,, \end{split}$$

$$\begin{aligned} f_{\rm coll}^{\rm peak} &= 1.65 \times 10^{-5} \,\mathrm{Hz} \left(\frac{v_w}{\beta/H_*}\right)^{-1} \left(\frac{100}{g_*}\right)^{-1/6} \left(\frac{T_*}{100 \,\mathrm{GeV}}\right) \left(\frac{0.62 v_w}{1.81 - 0.1 v_w + v_w^2}\right) \\ f_{\rm sw}^{\rm peak} &= 1.90 \times 10^{-5} \,\mathrm{Hz} \left(\frac{v_w}{\beta/H_*}\right)^{-1} \left(\frac{100}{g_*}\right)^{-1/6} \left(\frac{T_*}{100 \,\mathrm{GeV}}\right) \\ f_{\rm turb}^{\rm peak} &= 2.70 \times 10^{-5} \,\mathrm{Hz} \left(\frac{v_w}{\beta/H_*}\right)^{-1} \left(\frac{100}{g_*}\right)^{-1/6} \left(\frac{T_*}{100 \,\mathrm{GeV}}\right) \,. \end{aligned}$$
(C.13)

Enrico Maria Sessolo

GWs at different scales

Details of BP1 and BP2

BP2

 $T_p = 14.6 \, GeV$

 $m_S = 1 \text{ GeV}$: $\alpha = 10^{10}$, $\beta = 49.8$ $m_S = 1 \text{ GeV}$: $\alpha = 10^{11}$, $\beta = 78.9$

 $T_p = 8 \, GeV$

 $m_{S} = 1 \ TeV$: $\alpha = 0.27$, $\beta = 185$ $m_{S} = 1 \ TeV$: $\alpha = 0.88$, $\beta = 187$ *T_p* ~ 10 TeV $T_p \sim 10 \text{ TeV}$ 2PiNTS Kraków 2023 24 Enrico Maria Sessolo

Details of BP3 and BP4

 $m_S = 1~GeV$: $lpha = 10^9$, eta = 189 $T_p = 10.04~GeV$

 $m_{\mathcal{S}}=1~GeV$: $lpha=10^8$, eta=201

 $T_p = 11.5 \ GeV$

 $m_S = 1 \ TeV$: $\alpha = 0.02$, $\beta = 227$ $T_p \sim 10 \ TeV$

Enrico Maria Sessolo

2PiNTS Kraków 2023

 $m_S = 1 \ TeV$: $\alpha = 0.01$, $\beta = 229$ $T_p = ~10 \ TeV$