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Parton Distribution Function (PDF):

Parton densities
(long-distance)

Parton interaction
(short-distance)

extracting from a fit to experimental data

The probability f
a/p

(x,µ) that a parton a carries fraction x of the proton’s momentum
µ: Factorization scale
X: momentum fraction 

Free quarks Bound quarks Bound quarks 
+ QCD effects

Factorization Theorem 

PDF properties:

• Universal
• Constrained through momentum and number sum rules
• µ2-dependence governed by DGLAP evolution equations
• Non-perturbative: x-dependence of PDF is NOT calculable in pQCD

Parton Distribution Function (nPDF)
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Nuclear PDFs(nPDFs):

Nuclear Parton Distribution Function (nPDF)

Shadowing

Anti-shadowing

EMC

Motivations:
• Interpreting heavy-ion 

collision data
• Understanding Nuclear 

Structure
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QCD Global analysis:

Parametrization at initial scale f
i
(Q

0
,x) experimental data at Q

data

Construct χ2 function 

DGLAP evolution to f
i
(Q

data
,x)

Minimization

Uncertainties estimation

Nuclear Parton Distribution Function (nPDF)
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nCTEQ15 framework for nuclear PDF:

PDF of a nucleus (A – mass, Z – charge):

Functional form for bound proton at Q
0
:

Atomic number dependence is characterized in the c
k
 coefficients as

Kovarik et al., arXiv:1509.00792

Nuclear Parton Distribution Function (nPDF)
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nCTEQ15 framework for nuclear PDF:

PDF of a nucleus (A – mass, Z – charge):

Functional form for bound protons at Q
0
:

Atomic number dependence is characterized in the c
k
 coefficients as

new nCTEQ global nPDF release: CJ15 Accardi et al., arXiv:1602.03154

Nuclear Parton Distribution Function (nPDF)
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PDF uncertainties estimation:

Hessian method: Common method for estimating uncertainties in PDFs.

nPDF difficulties  

nPDF uncertainties

Markov Chain Monte Carlo method

relying on the Gaussian approximation of ∆χ2 

Lacking data (need low-x & precise data, for several nuclei)

Complexity and nature of nuclear effects 

deeper insight

Shortcomings:
 Non-gaussian errors
 Global minima judgment
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Markov Chain Monte Carlo ( MCMC )

A technique for randomly sampling a
probability distribution and approximating a 

desired quantity.

A sequence of random variables where the 
current value is dependent on the value of the 

prior variable ( Memory-less property)

Bayes theorem:

MCMC method

Prior: initial belief about the parameter before considering the data.
Likelihood: probability of observing the data given a specific value of the parameter.
Posterior: updated belief about the parameter given the data.
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Posterior distribution

Sampling based on 
the distribution

statistics/estimations
From the sample

samples

We aim to find the set of nPDF parameters that maximizes the posterior probability 
distribution given the experimental data.

Bayesian inference MCMC algorithms

MCMC method
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Metropolis algorithm: 

 Initialize parameters

 for i=1 to i=N:

    Generate proposed parameters via proposition function: θ * ~ q(θ * | θ i )

    Sample from uniform distribution: u ~ U(0,1)

    Compute acceptance ratio: α = p(θ * | D) / p(θ i | D) 

    If  u < min(1, α ) then x
 i+1

 =x *

 Else x 
i+1

 =x i
Metropolis-Hasting:

Adaptive Metropolis-Hasting:

Propose a new sample

Judgment of proposed sample  

MCMC method
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PDF Global analysis:

Parametrization at initial scale f
i
(Q

0
,x) experimental data at Q

data

Construct χ2 function 

DGLAP evolution to f
i
(Q

data
,x)

Minimization

uncertainties estimation
Gaussian error propagation

Hessian method

MCMC method
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PDF Global analysis:

Parametrization at initial scale f
i
(Q

0
,x) experimental data at Q

data

Construct χ2 function 

DGLAP evolution to f
i
(Q

data
,x)

Sample parameters 
Based on Bayes inference

uncertainties estimation
MCMC error estimation

MCMC method

MCMC method
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Generating the Markov Chain of nPDF parameters: 
Each point of the chain is representing a set of nPDF parameters 
(6 valance, 2 sea quarks and 2 gloun)

CJ15 nPDF 
parametrization

DIS and W/Z boson data: 
436 data points
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Preliminary results

diagonal: histogram 
of each parameter
off-diagonal: 2D 
correlation plots 
between parameters

Histogram of χ2 value which 
is fitted via χ2 function

Pairwise plot 

 MCMC can reveal non-Gaussian features of the underlying distribution



Error estimation:

Autocorrelation time:

15

Autocovariance:

Autocorrelation:

Autocorrelation function versus time interval

Thinning by rate 40

MC error (uncorrelated)MCMC error (correlated)

discard all except every k-th point of the chain

Preliminary results
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LHAPDF (set of nPDF grids): 

MCMC approach:
 Generating the Markov Chain
 Thinning the chain
 Dumping PDF corresponding to each unit of the thinned chain
 Evaluating the error band determined from Monte Carlo error

Preliminary results
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Thank you for your attention
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