Precision Theory for Heavy Flavour Physics

Mikołaj Misiak
University of Warsaw
"Polish Particle and Nuclear Theory Summit",
Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, November 22nd-24th, 2023

1. Introduction
2. $b \rightarrow s \ell^{+} \ell^{-}$transitions and $R_{D^{(*)}}$
3. Update on $\boldsymbol{B}_{s(d)} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$
4. $\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)$ - perturbative and non-perturbative contributions
5. Precision determinations of $V_{c b}$ from inclusive $B \rightarrow X \ell \bar{\nu}$
6. Summary

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right)
$$

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework.

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework. LEFT is obtained from SMEFT through decoupling of the W-boson and all the heavier SM particles.

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework. LEFT is obtained from SMEFT through decoupling of the \boldsymbol{W}-boson and all the heavier SM particles.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LEFT}} & =\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b, e, \mu, \tau)+\mathcal{L}_{\mathrm{kin}}\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \\
& +\frac{1}{M_{W}} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{M_{W}^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{M_{W}^{3}}\right) .
\end{aligned}
$$

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\text {SM }}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) \boldsymbol{Q}_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework. LEFT is obtained from SMEFT through decoupling of the \boldsymbol{W}-boson and all the heavier SM particles.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LEFT}} & =\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b, e, \mu, \tau)+\mathcal{L}_{\mathrm{kin}}\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \\
& +\frac{1}{M_{W}} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{M_{W}^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{M_{W}^{3}}\right)
\end{aligned}
$$

Generically: (Measured observable) $=(\mathrm{SM}$ contribution $)+$ (BSM effect).

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\text {SM }}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) \boldsymbol{Q}_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework. LEFT is obtained from SMEFT through decoupling of the W-boson and all the heavier SM particles.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LEFT}} & =\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b, e, \mu, \tau)+\mathcal{L}_{\mathrm{kin}}\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \\
& +\frac{1}{M_{W}} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{M_{W}^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{M_{W}^{3}}\right)
\end{aligned}
$$

Generically: (Measured observable) $=(\underbrace{\mathrm{SM} \text { contribution }}_{\text {dominant }})+($ BSM effect $)$.

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\text {SM }}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) \boldsymbol{Q}_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework. LEFT is obtained from SMEFT through decoupling of the W-boson and all the heavier SM particles.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LEFT}} & =\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b, e, \mu, \tau)+\mathcal{L}_{\mathrm{kin}}\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \\
& +\frac{1}{M_{W}} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{M_{W}^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{M_{W}^{3}}\right)
\end{aligned}
$$

Generically: (Measured observable) $=(\underbrace{\mathrm{SM} \text { contribution }}_{\text {dominant }})+(\underbrace{\text { BSM effect }}_{\text {subdominant }})$.

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\text {SM }}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) \boldsymbol{Q}_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework. LEFT is obtained from SMEFT through decoupling of the W-boson and all the heavier SM particles.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LEFT}} & =\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b, e, \mu, \tau)+\mathcal{L}_{\mathrm{kin}}\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \\
& +\frac{1}{M_{W}} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{M_{W}^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{M_{W}^{3}}\right)
\end{aligned}
$$

Generically: (Measured observable) $=(\underbrace{\mathrm{SM} \text { contribution }}_{\text {dominant }})+(\underbrace{\mathrm{BSM} \text { effect }}_{\text {subdominant }})$.

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\text {SM }}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) \boldsymbol{Q}_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework. LEFT is obtained from SMEFT through decoupling of the W-boson and all the heavier SM particles.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LEFT}} & =\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b, e, \mu, \tau)+\mathcal{L}_{\mathrm{kin}}\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \\
& +\frac{1}{M_{W}} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{M_{W}^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{M_{W}^{3}}\right) .
\end{aligned}
$$

Generically: (Measured observable) $\begin{aligned} & (\underbrace{\mathrm{SM} \text { contribution }}_{\text {dominant }})+\underbrace{\text { BSM effect }}_{\begin{array}{l}\text { subdominant } \\ \text { rough calculations sufficient }\end{array}} . \\ & \Rightarrow \text { TH precision necessary } .\end{aligned}$

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) \boldsymbol{Q}_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework. LEFT is obtained from SMEFT through decoupling of the W-boson and all the heavier SM particles.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LEFT}} & =\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b, e, \mu, \tau)+\mathcal{L}_{\mathrm{kin}}\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \\
& +\frac{1}{M_{W}} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{M_{W}^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{M_{W}^{3}}\right)
\end{aligned}
$$

Generically: (Measured observable) $\begin{aligned} & (\underbrace{(\mathrm{SM} \text { contribution })}_{\begin{array}{l}\text { dominant }\end{array}}+\underbrace{\text { BSM effect }) .}_{\begin{array}{l}\text { subdominant } \\ \text { rough calculations sufficient }\end{array}} \\ & \Rightarrow \text { TH precision necessary }\end{aligned}$

Exceptions: neutrino masses, dark matter, ...

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) \boldsymbol{Q}_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework. LEFT is obtained from SMEFT through decoupling of the W-boson and all the heavier SM particles.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LEFT}} & =\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b, e, \mu, \tau)+\mathcal{L}_{\mathrm{kin}}\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \\
& +\frac{1}{M_{W}} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{M_{W}^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{M_{W}^{3}}\right)
\end{aligned}
$$

Generically: (Measured observable) $\begin{aligned} & (\underbrace{\mathrm{SM} \text { contribution }}_{\text {dominant }})+\underbrace{\text { BSM effect }}_{\begin{array}{l}\text { subdominant } \\ \text { rough calculations sufficient }\end{array}} . \\ & \Rightarrow \text { TH precision necessary } .\end{aligned}$

Exceptions: neutrino masses, dark matter, ...

In collider physics?

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) \boldsymbol{Q}_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework. LEFT is obtained from SMEFT through decoupling of the W-boson and all the heavier SM particles.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LEFT}} & =\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b, e, \mu, \tau)+\mathcal{L}_{\mathrm{kin}}\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \\
& +\frac{1}{M_{W}} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{M_{W}^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{M_{W}^{3}}\right)
\end{aligned}
$$

Generically: (Measured observable) $\begin{aligned} & (\underbrace{\mathrm{SM} \text { contribution }}_{\text {dominant }})+\underbrace{\text { BSM effect }}_{\begin{array}{l}\text { subdominant } \\ \text { rough calculations sufficient }\end{array}} . \\ & \Rightarrow \text { TH precision necessary } .\end{aligned}$

Exceptions: neutrino masses, dark matter, ...

In collider physics? $\quad b \rightarrow s \ell^{+} \ell^{-} ?$

In new physics models where all the BSM particles have masses $m_{1} \equiv \Lambda \leq m_{2} \leq m_{3} \ldots m_{n}$, with $\Lambda \gg m_{t}$, and interact in a perturbative manner, the Standard Model Effective Field Theory (SMEFT) is a useful tool for describing physics phenomena at energy scales well below Λ.

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\text {SM }}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)}(\mu) \boldsymbol{Q}_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) .
$$

Flavor-changing processes that take place well below the electroweak scale are conveniently described in the Low-energy Effective Field Theory (LEFT) framework. LEFT is obtained from SMEFT through decoupling of the W-boson and all the heavier SM particles.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LEFT}} & =\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b, e, \mu, \tau)+\mathcal{L}_{\mathrm{kin}}\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \\
& +\frac{1}{M_{W}} \sum_{k} C_{k}^{(5)}(\mu) Q_{k}^{(5)}+\frac{1}{M_{W}^{2}} \sum_{k} C_{k}^{(6)}(\mu) Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{M_{W}^{3}}\right)
\end{aligned}
$$

Generically: (Measured observable) $\begin{aligned} & (\underbrace{\mathrm{SM} \text { contribution }}_{\text {dominant }})+\underbrace{\text { BSM effect }}_{\begin{array}{l}\text { subdominant } \\ \text { rough calculations sufficient }\end{array}} . \\ & \Rightarrow \text { TH precision necessary } .\end{aligned}$

Exceptions: neutrino masses, dark matter, ...

In collider physics? $\quad b \rightarrow s \ell^{+} \ell^{-} ? \quad R_{D^{(*)}} ?$

Ratios of exclusive semileptonic branching ratios

$$
\boldsymbol{R}\left(D^{(*)}\right)=\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right) / \mathcal{B}\left(B \rightarrow D^{(*)} \mu \bar{\nu}\right) \quad \text { (summer 2023): }
$$

A $\sim 3.3 \sigma$ deviation from the SM remains.
Large BSM effect or an experimental issue?

Deviations from SM predictions in $b \rightarrow s \ell^{+} \ell^{-}$transitions?
Recent LHCb measurement of
$\boldsymbol{R}_{\boldsymbol{K}^{(*)}}=\frac{\mathcal{B}\left(\boldsymbol{B} \rightarrow \boldsymbol{K}^{(*)} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)}{\mathcal{B}\left(\boldsymbol{B} \rightarrow \boldsymbol{K}^{(*)} \boldsymbol{e}^{+} \boldsymbol{e}^{-}\right)}$
[arXiv:2212.09153]

R_{K} low- $q^{2} \quad R_{K}$ central $-q^{2} \quad R_{K^{*}}$ low- $q^{2} \quad R_{K^{*}}$ central $-q^{2}$ $\begin{array}{ll}\text { low } q^{2}: & {[0.1,1,1] \mathrm{GeV}^{2}} \\ \text { central } q^{2}: & {[1.1,6.0] \mathrm{GeV}^{2}}\end{array}$

Deviations from SM predictions in $b \rightarrow s \ell^{+} \ell^{-}$transitions?

Recent LHCb measurement of
$\boldsymbol{R}_{\boldsymbol{K}^{(*)}}=\frac{\mathcal{B}\left(\boldsymbol{B} \rightarrow \boldsymbol{K}^{(*)} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)}{\mathcal{B}\left(\boldsymbol{B} \rightarrow \boldsymbol{K}^{(*)} \boldsymbol{e}^{+} \boldsymbol{e}^{-}\right)}$
[arXiv:2212.09153]

R_{K} low $-q^{2} \quad R_{K}$ central $-q^{2} \quad R_{K^{*}}$ low- $q^{2} \quad R_{K^{*}}$ central- q^{2}

$$
\begin{array}{ll}
\text { low } q^{2}: & {[0.1,1,1] \mathrm{GeV}^{2}} \\
\text { central } q^{2}: & {[1.1,6.0] \mathrm{GeV}^{2}}
\end{array}
$$

Sample constraints on the bsll operator Wilson coefficients from arXiv:2212.10497 by A. Grelio, J. Salko, A. Smolkovič, P. Stangl:

Deviations from SM predictions in $b \rightarrow s \ell^{+} \ell^{-}$transitions?

Recent LHCb measurement of
$\boldsymbol{R}_{\boldsymbol{K}^{(*)}}=\frac{\mathcal{B}\left(\boldsymbol{B} \rightarrow \boldsymbol{K}^{(*)} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)}{\mathcal{B}\left(\boldsymbol{B} \rightarrow \boldsymbol{K}^{(*)} \boldsymbol{e}^{+} \boldsymbol{e}^{-}\right)}$
[arXiv:2212.09153]

R_{K} low- $q^{2} \quad R_{K}$ central $-q^{2} \quad R_{K^{*}}$ low- $q^{2} \quad R_{K^{*}}$ central $-q^{2}$

$$
\begin{array}{ll}
\text { low } q^{2}: & {[0.1,1,1] \mathrm{GeV}^{2}} \\
\text { central } q^{2}: & {[1.1,6.0] \mathrm{GeV}^{2}}
\end{array}
$$

Sample constraints on the bsll operator Wilson coefficients from arXiv:2212.10497 by A. Grelio, J. Salko, A. Smolkovič, P. Stangl:

Possible charm-loop effects that could mimic a deviation in $C_{9}^{\text {univ }}$:

(a)

(b)

(c)

Fig. 1 from arXiv:2212.10516 by M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini and M. Valli.

SM predictions vs. measurements for $\mathcal{B}\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)$ and $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$

SM predictions vs. measurements for $\mathcal{B}\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)$ and $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$

SM predictions vs. measurements for $\mathcal{B}\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)$ and $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$

SM predictions vs. measurements for $\mathcal{B}\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)$ and $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \mu^{+} \mu^{-}\right)$

$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6}^{\exp } \times 10^{4}=3.49 \pm 0.19 \quad(\pm 5.4 \%)$
CLEO, BaBar and Belle measurements combined by PDG [2022] and HFLAV [arXiv:2206.07501].

SM predictions vs. measurements for $\mathcal{B}\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)$ and $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$

$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6}^{\exp } \times 10^{4}=3.49 \pm 0.19 \quad(\pm 5.4 \%)$
CLEO, BaBar and Belle measurements combined by PDG [2022] and HFLAV [arXiv:2206.07501].
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6}^{\mathrm{SM}} \times 10^{4}=3.40 \pm 0.17 \quad(\pm 5.0 \%)$ arXiv:2002.01548 by MM, A. Rehman, M. Steinhauser.

SM predictions vs. measurements for $\mathcal{B}\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)$ and $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$

SM predictions vs. measurements for $\mathcal{B}\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)$ and $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6}^{\exp } \times 10^{4}=3.49 \pm 0.19 \quad(\pm 5.4 \%)
$$

CLEO, BaBar and Belle measurements combined by PDG [2022] and HFLAV [arXiv:2206.07501].
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6}^{\mathrm{SM}} \times 10^{4}=3.40 \pm 0.17 \quad(\pm 5.0 \%)$ arXiv:2002.01548 by MM, A. Rehman, M. Steinhauser.
$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{\exp } \times 10^{9}=3.36 \pm 0.28 \quad(\pm 8.3 \%)$ LHCb'21, CMS'22 and ATLAS'18 measurements combined in arXiv:2212.10497 by A. Greljo, J. Salko, A. Smolkovič, P. Stangl.

$$
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{\mathrm{SM}} \times 10^{9}=3.68 \pm 0.12 \quad(\pm 3.2 \%)
$$

arXiv:1311.0903 by C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou, M. Steinhauser with parameter updates (next slides) and -0.5% QED correction from arXiv:1907.07011 by M. Beneke, C. Bobeth and R. Szafron.

Input parameter update for $B_{s, d} \rightarrow \ell^{+} \ell^{-}$

	arXiv:1311.0903	this talk	source
$M_{t}[\mathrm{GeV}]$	$173.1(9)$	$172.69(30)$	PDG'23, https://pdglive.lbl.gov
$\alpha_{s}\left(M_{Z}\right)$	$0.1184(7)$	$0.1179(9)$	PDG'22, https://pdg.lbl.gov
$f_{B_{s}}[\mathrm{GeV}]$	$0.2277(45)$	$0.2303(13)$	FLAG'23, http://flag.unibe.ch
$f_{B_{d}}[\mathrm{GeV}]$	$0.1905(42)$	$0.1900(13)$	FLAG'23, http://flag.unibe.ch
$\left\|V_{c b}\right\| \times 10^{3}$	$42.40(90)$	$42.16(50)$	inclusive, arXiv:2107.00604
$\left\|V_{t b}^{*} V_{t s}\right\| /\left\|V_{c b}\right\|$	$0.9800(10)$	$0.9818(5)$	derived from UTfit, arXiv:2212.03894
$\left\|V_{t b}^{*} V_{t d}\right\| \times 10^{2}$	$0.88(3)$	$0.859(11)$	UTfit, arXiv:2212.03894
$\tau_{H}^{s}[\mathrm{ps}]$	$1.615(21)$	$1.624(9)$	HFLAV'23, https://hflav.web.cern.ch
$\tau_{H}^{d}[\mathrm{ps}]$	$1.519(7)$	$1.519(4)$	HFLAV' ${ }^{\prime} 23$, https://hflav.web.cern.ch
$\overline{\mathcal{B}}_{s \mu} \times 10^{9}$	$3.65(23)$	$3.68(12)$	
$\overline{\mathcal{B}}_{d \mu} \times 10^{10}$	$1.06(9)$	$0.99(4)$	

Sources of uncertainties	$f_{B_{q}}$	CKM	τ_{H}^{q}	M_{t}	α_{s}	other parametric	non- parametric	\sum
$\overline{\mathcal{B}}_{s \ell}$	1.1%	2.4%	0.6%	0.5%	0.2%	$<0.1 \%$	1.5%	3.2%
$\overline{\mathcal{B}}_{d \ell}$	1.4%	2.6%	0.3%	0.5%	0.2%	$<0.1 \%$	1.5%	3.6%

SM predictions for all the branching ratios $\overline{\mathcal{B}}_{q \ell} \equiv \overline{\mathcal{B}}\left(B_{q}^{0} \rightarrow \ell^{+} \ell^{-}\right)$ including 2-loop electroweak and 3-loop QCD matching at $\mu_{0} \sim m_{t}$ [C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou, M. Steinhauser, arXiv:1311.0903]

$$
\begin{gathered}
\overline{\mathcal{B}}_{s e} \times 10^{14}=\eta_{\text {QED }}(8.54 \pm 0.13) \boldsymbol{R}_{t \alpha} \boldsymbol{R}_{s}, \\
\overline{\mathcal{B}}_{s \mu} \times 10^{9}=\eta_{\mathrm{QED}}(3.65 \pm 0.06) \boldsymbol{R}_{t \alpha} \boldsymbol{R}_{s}, \\
\overline{\mathcal{B}}_{s \tau} \times 10^{7}=\eta_{\mathrm{QED}}(7.73 \pm 0.12) \boldsymbol{R}_{t \alpha} \boldsymbol{R}_{s}, \\
\overline{\mathcal{B}}_{d e} \times 10^{15}=\eta_{\mathrm{QED}}(2.48 \pm 0.04) \boldsymbol{R}_{t \alpha} R_{d}, \\
\overline{\mathcal{B}}_{d \mu} \times 10^{10}=\eta_{\mathrm{QED}}(1.06 \pm 0.02) \boldsymbol{R}_{t \alpha} R_{d}, \\
\overline{\mathcal{B}}_{d \tau} \times 10^{8}=\eta_{\mathrm{QED}}(2.22 \pm 0.04) \boldsymbol{R}_{t \alpha} \boldsymbol{R}_{d},
\end{gathered}
$$

where

$$
\begin{aligned}
R_{t \alpha} & =\left(\frac{M_{t}}{173.1 \mathrm{GeV}}\right)^{3.06}\left(\frac{\alpha_{s}\left(M_{Z}\right)}{0.1184}\right)^{-0.18} \\
R_{s} & =\left(\frac{f_{B_{s}}[\mathrm{MeV}]}{227.7}\right)^{2}\left(\frac{\left|V_{c b}\right|}{0.0424}\right)^{2}\left(\frac{\left|V_{t b}^{\star} V_{t s} / V_{c b}\right|}{0.980}\right)^{2} \frac{\tau_{H}^{s}[\mathrm{ps}]}{1.615} \\
R_{d} & =\left(\frac{f_{B_{d}}[\mathrm{MeV}]}{190.5}\right)^{2}\left(\frac{\left|V_{t b}^{\star} V_{t d}\right|}{0.0088}\right)^{2} \frac{\tau_{d}^{\mathrm{av}}[\mathrm{ps}]}{1.519}
\end{aligned}
$$

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B q}^{2}}$.

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B q}^{2}}$.

As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections receive suppression by $\frac{m_{\ell}^{2}}{\Lambda M_{B_{q}}}$ only:

See also the lecture by RS at the Paris-2019 workshop:
https://indico.in2p3.fr/event/18845/sessions/12137/attachments/54326/71064/Szafron.pdf

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

 The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B_{q}}^{2}}$.As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections receive suppression by $\frac{m_{\ell}^{2}}{\Lambda M_{B_{q}}}$ only:

See also the lecture by RS at the Paris-2019 workshop:
https://indico.in2p3.fr/event/18845/sessions/12137/attachments/54326/71064/Szafron.pdf
Consequently, the relative QED correction scales like $\frac{\alpha_{e m}}{\pi} \frac{M_{B_{q}}}{\Lambda}$.

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B_{q}}^{2}}$.

As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections receive suppression by $\frac{m_{\ell}^{2}}{\Lambda M_{B_{q}}}$ only:

See also the lecture by RS at the Paris-2019 workshop:
https://indico.in2p3.fr/event/18845/sessions/12137/attachments/54326/71064/Szafron.pdf
Consequently, the relative QED correction scales like $\frac{\alpha_{e m}}{\pi} \frac{M_{B_{q}}}{\Lambda}$.
Their explicit calculation in arXiv: 1908.07011 implies that the previous results for all the $B_{q} \rightarrow \ell^{+} \ell^{-}$ branching ratios need to be multiplied by

$$
\eta_{\text {QED }}=0.995_{-0.05}^{+0.03} .
$$

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B q}^{2}}$.

As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections receive suppression by $\frac{m_{\ell}^{2}}{\Lambda M_{B_{q}}}$ only:

See also the lecture by RS at the Paris-2019 workshop:
https://indico.in2p3.fr/event/18845/sessions/12137/attachments/54326/71064/Szafron.pdf
Consequently, the relative QED correction scales like $\frac{\alpha_{e m}}{\pi} \frac{M_{B_{q}}}{\Lambda}$.
Their explicit calculation in arXiv: 1908.07011 implies that the previous results for all the $B_{q} \rightarrow \ell^{+} \ell^{-}$ branching ratios need to be multiplied by

$$
\eta_{\mathrm{QED}}=0.995_{-0.05}^{+0.03}
$$

Thus, despite the $\frac{M_{B_{q}}}{\Lambda}$-enhancement, the effect is well within the previously estimated $\pm 1.5 \%$ non-parametric uncertainty.

Enhanced QED effects in $B_{q} \rightarrow \ell^{+} \ell^{-}$

The leading contribution to the decay rate is suppressed by $\frac{m_{\ell}^{2}}{M_{B q}^{2}}$.

As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections receive suppression by $\frac{m_{\ell}^{2}}{\Lambda M_{B_{q}}}$ only:

See also the lecture by RS at the Paris-2019 workshop:
https://indico.in2p3.fr/event/18845/sessions/12137/attachments/54326/71064/Szafron.pdf
Consequently, the relative QED correction scales like $\frac{\alpha_{e m}}{\pi} \frac{M_{B_{q}}}{\Lambda}$.
Their explicit calculation in arXiv: 1908.07011 implies that the previous results for all the $B_{q} \rightarrow \ell^{+} \ell^{-}$ branching ratios need to be multiplied by

$$
\eta_{\mathrm{QED}}=0.995_{-0.05}^{+0.03} .
$$

Thus, despite the $\frac{M_{B_{q}}}{\Lambda}$-enhancement, the effect is well within the previously estimated $\pm 1.5 \%$ non-parametric uncertainty.

However, it is larger than $\pm 0.3 \%$ due to scale-variation of the Wilson coefficient $C_{A}\left(\mu_{b}\right)$.

Determination of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ in the SM :

$$
\begin{gathered}
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi \mathrm{C}}\left[\mathrm{P}\left(\mathrm{E}_{0}\right)+\underset{\text { pert. }}{\mathrm{p}} \underset{\text { non-pert. }}{\left.N\left(E_{0}\right)\right]}\right. \\
\frac{\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]_{E_{\gamma}>E_{0}}}{\sim V_{c b} /\left.V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u}^{p} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \mathrm{P}\left(\mathrm{E}_{0}\right)
\end{gathered}
$$

Determination of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ in the SM :

$$
\begin{gathered}
\left.\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi \mathrm{C}}\left[\mathrm{P}\left(\mathrm{E}_{0}\right)+\underset{\text { pert. }}{\mathrm{N}} \underset{\begin{array}{c}
\mathrm{N} \\
\text { non-pert. }
\end{array}}{\sim} \boldsymbol{E}_{0}\right)\right] \\
\frac{\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]_{E_{\gamma}>E_{0}}}{\left|V_{c b} / V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u}^{p} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \mathrm{P}\left(\mathrm{E}_{0}\right)
\end{gathered}
$$

Eight operators Q_{i} matter for $\mathcal{B}_{s \gamma}^{S M}$ when the NLO EW and/or CKM-suppressed effects are neglected:

Determination of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ in the SM :

$$
\begin{gathered}
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi \mathrm{C}}\left[\mathrm{P}\left(\mathrm{E}_{0}\right)+\underset{\text { pert. }}{\mathrm{N}} \underset{\text { non-pert. }}{\left.N\left(\boldsymbol{E}_{0}\right)\right]}\right. \\
\frac{\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]_{E_{\gamma}>E_{0}}}{\sim V_{c b} /\left.V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u}^{p} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \mathrm{P}\left(\mathrm{E}_{0}\right)
\end{gathered}
$$

Eight operators Q_{i} matter for $\mathcal{B}_{s \gamma}^{S M}$ when the NLO EW and/or CKM-suppressed effects are neglected:

$\Gamma\left(b \rightarrow X_{s}^{p} \gamma\right)=\frac{G_{F}^{2} m_{b, \text { pole }}^{5} \alpha_{\mathrm{e} m}}{32 \pi^{4}}\left|V_{t s}^{*} V_{t b}\right|^{2} \sum_{i, j=1}^{8} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) \hat{G}_{i j}$

Determination of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ in the SM :

$$
\begin{gathered}
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi \mathrm{C}}\left[\mathrm{P}\left(\mathrm{E}_{0}\right)+\underset{\text { pert. }}{\mathrm{N}} \underset{\text { non-pert. }}{\left.N\left(E_{0}\right)\right]}\right. \\
\frac{\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]_{E_{\gamma}>E_{0}}}{\sim V_{c b} /\left.V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u}^{p} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \mathrm{P}\left(\mathrm{E}_{0}\right)
\end{gathered}
$$

Eight operators Q_{i} matter for $\mathcal{B}_{s \gamma}^{S M}$ when the NLO EW and/or CKM-suppressed effects are neglected:

	photonic dipole	gluonic dipole	

$$
\Gamma\left(b \rightarrow X_{s}^{p} \gamma\right)=\frac{G_{F}^{2} m_{b, \text { pole }}^{5} \alpha_{\mathrm{e} m}}{32 \pi^{4}}\left|V_{t s}^{*} V_{t b}\right|^{2} \sum_{i, j=1}^{8} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) \hat{G}_{i j}
$$

NLO $\left(\mathcal{O}\left(\alpha_{s}\right)\right)$ - last missing pieces being evaluated by Tobias Huber and Lars-Thorben Moos
[arXiv:1912.07916]
Most important @ NNLO $\left(\mathcal{O}\left(\alpha_{s}^{2}\right)\right): \quad \underset{\text { known }}{\hat{G}_{77},} \hat{G}_{17}, \hat{G}_{27}$
between the $m_{c} \gg m_{b}$ and $m_{c}=0$ limits [arXiv:1503.01791]
$\Rightarrow \quad \pm 3 \%$ uncertainty in $\mathcal{B}_{s \gamma}^{\mathrm{SM}}$

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts $(\mathcal{O}(500)$ families $)$.

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts ($\mathcal{O}(500)$ families).
2. Reduction to master integrals (MIs) with the help of Integration By Parts (IBP) [KIRA]. $\mathcal{O}(1 \mathrm{~TB})$ RAM and weeks of CPU needed for the most complicated families.

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts ($\mathcal{O}(500)$ families).
2. Reduction to master integrals (MIs) with the help of Integration By Parts (IBP) [KIRA]. $\mathcal{O}(1 \mathrm{~TB})$ RAM and weeks of CPU needed for the most complicated families.
3. Extending the set of master integrals \boldsymbol{M}_{k} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} M_{k}(z, \epsilon)=\sum_{l} R_{k l}(z, \epsilon) M_{l}(z, \epsilon) \tag{*}
\end{equation*}
$$

where $\boldsymbol{R}_{\boldsymbol{n k}}$ are rational functions of their arguments.

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts ($\mathcal{O}(500)$ families).
2. Reduction to master integrals (MIs) with the help of Integration By Parts (IBP) [KIRA]. $\mathcal{O}(1 \mathrm{~TB})$ RAM and weeks of CPU needed for the most complicated families.
3. Extending the set of master integrals \boldsymbol{M}_{k} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} M_{k}(z, \epsilon)=\sum_{l} R_{k l}(z, \epsilon) M_{l}(z, \epsilon) \tag{*}
\end{equation*}
$$

where $\boldsymbol{R}_{\boldsymbol{n k}}$ are rational functions of their arguments.
4. Calculating boundary conditions for (*) using automatized asymptotic expansions at $\boldsymbol{m}_{\boldsymbol{c}} \gg \boldsymbol{m}_{b}$.

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts ($\mathcal{O}(500)$ families).
2. Reduction to master integrals (MIs) with the help of Integration By Parts (IBP) [KIRA]. $\mathcal{O}(1 \mathrm{~TB})$ RAM and weeks of CPU needed for the most complicated families.
3. Extending the set of master integrals \boldsymbol{M}_{k} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} M_{k}(z, \epsilon)=\sum_{l} R_{k l}(z, \epsilon) M_{l}(z, \epsilon) \tag{*}
\end{equation*}
$$

where $\boldsymbol{R}_{\boldsymbol{n k}}$ are rational functions of their arguments.
4. Calculating boundary conditions for (*) using automatized asymptotic expansions at $\boldsymbol{m}_{\boldsymbol{c}} \gg \boldsymbol{m}_{b}$.
5. Calculating three-loop single-scale master integrals for the boundary conditions.

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts ($\mathcal{O}(500)$ families).
2. Reduction to master integrals (MIs) with the help of Integration By Parts (IBP) [KIRA]. $\mathcal{O}(1 \mathrm{~TB})$ RAM and weeks of CPU needed for the most complicated families.
3. Extending the set of master integrals \boldsymbol{M}_{k} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} M_{k}(z, \epsilon)=\sum_{l} R_{k l}(z, \epsilon) M_{l}(z, \epsilon) \tag{*}
\end{equation*}
$$

where $\boldsymbol{R}_{\boldsymbol{n k}}$ are rational functions of their arguments.
4. Calculating boundary conditions for $(*)$ using automatized asymptotic expansions at $\boldsymbol{m}_{\boldsymbol{c}} \gg \boldsymbol{m}_{\boldsymbol{b}}$.
5. Calculating three-loop single-scale master integrals for the boundary conditions.
6. Solving the system (*) numerically [A.C. Hindmarsch, http://www.netlib.org/odepack] along an ellipse in the complex \boldsymbol{z} plane. Doing so along several different ellipses allows us to estimate the numerical error.

Another approach to bare 2-body contributions in arXiv:2309.14707
[M. Czaja, M. Czakon, T. Huber, M. Misiak, M. Niggetiedt, A. Rehman, K. Schönwald, M. Steinhauser]

Another approach to bare 2-body contributions in arXiv:2309.14707
[M. Czaja, M. Czakon, T. Huber, M. Misiak, M. Niggetiedt, A. Rehman, K. Schönwald, M. Steinhauser]

1. The MIs are numerically calculated at the physical value of m_{c} using AMFlow [arXiv:2201.11669].

Another approach to bare 2-body contributions in arXiv:2309.14707

[M. Czaja, M. Czakon, T. Huber, M. Misiak, M. Niggetiedt, A. Rehman, K. Schönwald, M. Steinhauser]

1. The MIs are numerically calculated at the physical value of \boldsymbol{m}_{c} using AMFlow [arXiv:2201.11669].
2. Thus, no expansions in the limit $m_{c} \gg m_{b}$ need to be determined. We have tested them though.

Another approach to bare 2-body contributions in arXiv:2309.14707

[M. Czaja, M. Czakon, T. Huber, M. Misiak, M. Niggetiedt, A. Rehman, K. Schönwald, M. Steinhauser]

1. The MIs are numerically calculated at the physical value of $\boldsymbol{m}_{\boldsymbol{c}}$ using AMFlow [arXiv:2201.11669].
2. Thus, no expansions in the limit $m_{c} \gg m_{b}$ need to be determined. We have tested them though.
3. UV and IR divergences are dimensionally regulated. The 2-body contributions alone are not IR safe.

Another approach to bare 2-body contributions in arXiv:2309.14707

[M. Czaja, M. Czakon, T. Huber, M. Misiak, M. Niggetiedt, A. Rehman, K. Schönwald, M. Steinhauser]

1. The MIs are numerically calculated at the physical value of m_{c} using AMFlow [arXiv:2201.11669].
2. Thus, no expansions in the limit $m_{c} \gg m_{b}$ need to be determined. We have tested them though.
3. UV and IR divergences are dimensionally regulated. The 2-body contributions alone are not IR safe.
4. Sample result: $\Delta_{21} \hat{G}_{27}^{(2) 2 P}(z)=\frac{368}{243 \epsilon^{3}}+\frac{736-324 f_{0}(z)}{243 \epsilon^{2}}+\frac{1}{\epsilon}\left(\frac{1472}{243}+\frac{92}{729} \pi^{2}-\frac{8 f_{0}(z)+4 f_{1}(z)}{3}\right)+p(z)$,

Another approach to bare 2-body contributions in arXiv:2309.14707

[M. Czaja, M. Czakon, T. Huber, M. Misiak, M. Niggetiedt, A. Rehman, K. Schönwald, M. Steinhauser]

1. The MIs are numerically calculated at the physical value of m_{c} using AMFlow [arXiv:2201.11669].
2. Thus, no expansions in the limit $m_{c} \gg m_{b}$ need to be determined. We have tested them though.
3. UV and IR divergences are dimensionally regulated. The 2-body contributions alone are not IR safe.
4. Sample result: $\Delta_{21} \hat{G}_{27}^{(2) 2 P}(z)=\frac{368}{243 \epsilon^{3}}+\frac{736-324 f_{0}(z)}{243 \epsilon^{2}}+\frac{1}{\epsilon}\left(\frac{1472}{243}+\frac{92}{729} \pi^{2}-\frac{8 f_{0}(z)+4 f_{1}(z)}{3}\right)+p(z)$,
where $p(z=0.04) \simeq 144.959811$.

Another approach to bare 2-body contributions in arXiv:2309.14707

[M. Czaja, M. Czakon, T. Huber, M. Misiak, M. Niggetiedt, A. Rehman, K. Schönwald, M. Steinhauser]

1. The MIs are numerically calculated at the physical value of m_{c} using AMFlow [arXiv:2201.11669].
2. Thus, no expansions in the limit $m_{c} \gg m_{b}$ need to be determined. We have tested them though.
3. UV and IR divergences are dimensionally regulated. The 2-body contributions alone are not IR safe.
4. Sample result: $\Delta_{21} \hat{G}_{27}^{(2) 2 P}(z)=\frac{368}{243 \epsilon^{3}}+\frac{736-324 f_{0}(z)}{243 \epsilon^{2}}+\frac{1}{\epsilon}\left(\frac{1472}{243}+\frac{92}{729} \pi^{2}-\frac{8 f_{0}(z)+4 f_{1}(z)}{3}\right)+p(z)$,
where $p(z=0.04) \simeq 144.959811$.
The large- z expansion of $p(z)$ reads:

$$
\begin{aligned}
p(z)= & \frac{138530}{6561}-\frac{3680}{729} \zeta(3)-\frac{6136}{243} L+\frac{5744}{729} L^{2}-\frac{1808}{729} L^{3}+\frac{1}{z}\left(-\frac{4222952}{1366875}-\frac{602852}{273375} L+\frac{34568}{18255} L^{2}-\frac{532}{1215} L^{3}\right) \\
& +\frac{1}{z^{2}}\left(-\frac{33395725469}{26254935000}-\frac{111861263}{93767625} L+\frac{156358}{178605} L^{2}-\frac{172}{1215} L^{3}\right)+\mathcal{O}\left(\frac{1}{z^{3}}\right), \quad \text { with } L=\log z
\end{aligned}
$$

2-body contributions from vertex diagrams

in arXiv:2303.01714 [C. Greub, H.M. Asatrian, F. Saturnino, C. Wiegand] and arXiv:2309.14706 [M. Fael, F. Lange, K. Schönwald, M. Steinhauser]

2-body contributions from vertex diagrams

in arXiv:2303.01714 [C. Greub, H.M. Asatrian, F. Saturnino, C. Wiegand] and arXiv:2309.14706 [M. Fael, F. Lange, K. Schönwald, M. Steinhauser]

1. Amplitudes rather than interference terms.

2-body contributions from vertex diagrams

in arXiv:2303.01714 [C. Greub, H.M. Asatrian, F. Saturnino, C. Wiegand] and arXiv:2309.14706 [M. Fael, F. Lange, K. Schönwald, M. Steinhauser]

1. Amplitudes rather than interference terms.
2. In arXiv:2303.01714: only diagrams with no gluon-(b-quark) couplings.

2-body contributions from vertex diagrams

in arXiv:2303.01714 [C. Greub, H.M. Asatrian, F. Saturnino, C. Wiegand] and arXiv:2309.14706 [M. Fael, F. Lange, K. Schönwald, M. Steinhauser]

1. Amplitudes rather than interference terms.
2. In arXiv:2303.01714: only diagrams with no gluon-(b-quark) couplings.
3. IBP as usual. Then either AMFlow or differential equations starting from $m_{c} \gg m_{b}$.

2-body contributions from vertex diagrams

 in arXiv:2303.01714 [C. Greub, H.M. Asatrian, F. Saturnino, C. Wiegand] and arXiv:2309.14706 [M. Fael, F. Lange, K. Schönwald, M. Steinhauser]

1. Amplitudes rather than interference terms.
2. In arXiv:2303.01714: only diagrams with no gluon-(b-quark) couplings.
3. IBP as usual. Then either AMFlow or differential equations starting from $\boldsymbol{m}_{c} \gg \boldsymbol{m}_{b}$.
4. Simplifying the differential equations and solving them analytically in many cases.

2-body contributions from vertex diagrams

 in arXiv:2303.01714 [C. Greub, H.M. Asatrian, F. Saturnino, C. Wiegand] and arXiv:2309.14706 [M. Fael, F. Lange, K. Schönwald, M. Steinhauser]

1. Amplitudes rather than interference terms.
2. In arXiv:2303.01714: only diagrams with no gluon-(b-quark) couplings.
3. IBP as usual. Then either AMFlow or differential equations starting from $\boldsymbol{m}_{c} \gg \boldsymbol{m}_{b}$.
4. Simplifying the differential equations and solving them analytically in many cases.
5. Fully analytical solutions at the two-loop level in arXiv:2309.14706.

Resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.

M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.

Resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.

M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.

$\omega_{1} \leftrightarrow$ gluon momentum, $\quad F(x)=4 x \arctan ^{2}(1 / \sqrt{4 x-1})$

Resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.

M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.

$$
\begin{equation*}
\delta \mathrm{N}\left(\mathrm{E}_{0}\right)=\left(C_{2}-\frac{1}{6} C_{1}\right) C_{7}[\underbrace{\left.-\frac{\mu_{\mathrm{c}}^{2}}{27 \mathrm{~m}_{\mathrm{c}}}+\frac{\Lambda_{17}}{m_{b}}\right]} \tag{B}
\end{equation*}
$$

$$
\begin{aligned}
& \Lambda_{17}=\frac{2}{3} \operatorname{Re} \int_{-\infty}^{\infty} \frac{d \omega_{1}}{\omega_{1}}\left[1-F\left(\frac{m_{c}^{2}-i \varepsilon}{m_{b} \omega_{1}}\right)+\frac{m_{b} \omega_{1}}{12 m_{c}^{2}}\right] h_{17}\left(\omega_{1}, \mu\right) \\
& \omega_{1} \leftrightarrow \text { gluon momentum, } \quad F(x)=4 x \arctan ^{2}(1 / \sqrt{4 x-1})
\end{aligned}
$$

The soft function h_{17} :

$$
h_{17}\left(\omega_{1}, \mu\right)=\int \frac{d r}{4 \pi M_{B}} e^{-i \omega_{1} r}\langle\bar{B}|\left(\bar{h} S_{\bar{n}}\right)(0) \not \bar{h} i \gamma_{\alpha}^{\perp} \bar{n}_{\beta}\left(S_{\bar{n}}^{\dagger} g G_{s}^{\alpha \beta} S_{\bar{n}}\right)(r \bar{n})\left(S_{\bar{n}}^{\dagger} h\right)(0)|\bar{B}\rangle \quad\left(m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}\right)
$$

A class of models for h_{17} :

$$
\boldsymbol{h}_{17}\left(\omega_{1}, \boldsymbol{\mu}\right)=e^{-\frac{\omega_{1}^{2}}{2 \sigma^{2}} \sum_{n} \boldsymbol{a}_{2 n} \boldsymbol{H}_{2 n}\left(\frac{\omega_{1}}{\sigma \sqrt{2}}\right), \quad \sigma<1 \mathrm{GeV}, \quad \text { Hermite polynomials }}
$$

Constraints on moments (e.g.): $\quad \int d \omega_{1} h_{17}=\frac{2}{3} \mu_{G}^{2}, \quad \int d \omega_{1} \omega_{1}^{2} h_{17}=\frac{2}{15}\left(5 m_{5}+3 m_{6}-2 m_{9}\right)$.

Resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.

M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.

$\delta \mathrm{N}\left(\mathrm{E}_{0}\right)=\left(C_{2}-\frac{1}{6} C_{1}\right) C_{7}[\underbrace{-\frac{\mu_{\mathrm{G}}^{2}}{27 \mathrm{~m}_{\mathrm{c}}^{2}}+\frac{\Lambda_{17}}{\mathrm{~m}_{\mathrm{b}}}}]$

$$
\begin{aligned}
& \Lambda_{17}=\frac{2}{3} \operatorname{Re} \int_{-\infty}^{\infty} \frac{d \omega_{1}}{\omega_{1}}\left[1-F\left(\frac{m_{c}^{2}-i \varepsilon}{m_{b} \omega_{1}}\right)+\frac{m_{b} \omega_{1}}{12 m_{c}^{2}}\right] h_{17}\left(\omega_{1}, \mu\right) \\
& \omega_{1} \leftrightarrow \text { gluon momentum, } \quad F(x)=4 x \arctan ^{2}(1 / \sqrt{4 x-1})
\end{aligned}
$$

The soft function h_{17} :

$$
h_{17}\left(\omega_{1}, \mu\right)=\int \frac{d r}{4 \pi M_{B}} e^{-i \omega_{1} r}\langle\bar{B}|\left(\bar{h} S_{\bar{n}}\right)(0) \not \bar{h} i \gamma_{\alpha}^{\perp} \bar{n}_{\beta}\left(S_{\bar{n}}^{\dagger} g G_{s}^{\alpha \beta} S_{\bar{n}}\right)(r \bar{n})\left(S_{\bar{n}}^{\dagger} h\right)(0)|\bar{B}\rangle \quad\left(m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}\right)
$$

A class of models for h_{17} :

$$
\boldsymbol{h}_{17}\left(\omega_{1}, \boldsymbol{\mu}\right)=e^{-\frac{\omega_{1}^{2}}{2 \sigma^{2}}} \sum_{n} \boldsymbol{a}_{2 n} \boldsymbol{H}_{2 n}\left(\frac{\omega_{1}}{\sigma \sqrt{2}}\right), \quad \sigma<1 \mathrm{GeV}
$$

Hermite polynomials
Constraints on moments (e.g.): $\quad \int d \omega_{1} h_{17}=\frac{2}{3} \mu_{G}^{2}, \quad \int d \omega_{1} \omega_{1}^{2} h_{17}=\frac{2}{15}\left(5 m_{5}+3 m_{6}-2 m_{9}\right)$.

Resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.

M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.

$\delta \mathrm{N}\left(\mathrm{E}_{0}\right)=\left(C_{2}-\frac{1}{6} C_{1}\right) C_{7}[\underbrace{-\frac{\mu_{\mathrm{G}}^{2}}{27 \mathrm{~m}_{\mathrm{c}}^{2}}+\frac{\Lambda_{17}}{\mathrm{~m}_{\mathrm{b}}}}]$

$$
\begin{aligned}
& \Lambda_{17}=\frac{2}{3} \operatorname{Re} \int_{-\infty}^{\infty} \frac{d \omega_{1}}{\omega_{1}}\left[1-F\left(\frac{m_{c}^{2}-i \varepsilon}{m_{b} \omega_{1}}\right)+\frac{m_{b} \omega_{1}}{12 m_{c}^{2}}\right] h_{17}\left(\omega_{1}, \mu\right) \\
& \omega_{1} \leftrightarrow \text { gluon momentum, } \quad F(x)=4 x \arctan ^{2}(1 / \sqrt{4 x-1})
\end{aligned}
$$

The soft function h_{17} :

$$
h_{17}\left(\omega_{1}, \mu\right)=\int \frac{d r}{4 \pi M_{B}} e^{-i \omega_{1} r}\langle\bar{B}|\left(\bar{h} S_{\bar{n}}\right)(0) \ddot{h} i \gamma_{\alpha}^{\perp} \bar{n}_{\beta}\left(S_{\bar{n}}^{\dagger} g G_{s}^{\alpha \beta} S_{\bar{n}}\right)(r \bar{n})\left(S_{\bar{n}}^{\dagger} h\right)(0)|\bar{B}\rangle \quad\left(m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}\right)
$$

A class of models for h_{17} :

Hermite polynomials
Constraints on moments (e.g.): $\quad \int d \omega_{1} h_{17}=\frac{2}{3} \mu_{G}^{2}, \quad \int d \omega_{1} \omega_{1}^{2} h_{17}=\frac{2}{15}\left(5 m_{5}+3 m_{6}-2 m_{9}\right)$.

$\mathrm{G}+\mathrm{P}$ numerically:
$\Lambda_{17} \in[-24,5] \mathrm{MeV}$ for $m_{c}=1.17 \mathrm{GeV}$.
Factor-of-3 improvement w.r.t. BLNP.

In our code: $\kappa_{V}=1.2 \pm 0.3$.
Warning: scheme for m_{c} !

Moment constraints vs. models of \boldsymbol{h}_{17}

M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012 - only the leading moment included.
A. Gunawardana, G. Paz, arXiv:1908.02812 - estimates of the subleading moments from LLSA included.
M. Benzke, T. Hurth, arXiv:2006.00624 - as above but with more generous modeling and partial $1 / m_{b}^{2}$ corrections.

Plots from the latter article:

Another recent contribution: clarifying the SCET treatment of resolved photons in the $Q_{8}-Q_{8}$ interference; T. Hurth and R. Szafron, arXiv:2301.01739.

Inclusive determinations of $\left|V_{c b}\right|$ with $\mathcal{O}\left(\alpha_{s}^{3}\right)$ effects.

$$
\begin{align*}
\Gamma\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right) & =\Gamma_{0} f(\rho)\left[1+a_{1} \frac{\alpha_{s}}{\pi}+a_{2}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+a_{3}\left(\frac{\alpha_{s}}{\pi}\right)^{3}\right. \tag{1}\\
& \left.-\left(\frac{1}{2}-p_{1} \frac{\alpha_{s}}{\pi}\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}}+\left(g_{0}+g_{1} \frac{\alpha_{s}}{\pi}\right) \frac{\mu_{G}^{2}}{m_{b}^{2}}+d_{0} \frac{\rho_{D}^{3}}{m_{b}^{3}}-g_{0} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots\right]
\end{align*}
$$

$\Gamma_{0}=\frac{G_{F}^{2} m_{b, \mathrm{kin}}^{5}\left|V_{c b}\right|^{2} A_{e w}}{192 \pi^{3}}, \quad f(\rho)=1-8 \rho+8 \rho^{3}-\rho^{4}-12 \rho^{2} \ln \rho, \quad \rho=\bar{m}_{c}^{2}\left(\mu_{c}\right) / \boldsymbol{m}_{b, \mathrm{kin}}^{2}$.

1. Evaluation of $a_{3}:$ M. Fael, K. Schönwald, M. Steinhauser, arXiv:2011.13654.
2. Finding $\frac{m_{b, \text { kin }}}{m_{b, \text { pole }}}$ up to $\mathcal{O}\left(\alpha_{s}^{3}\right)$: M. Fael, K. Schönwald, M. Steinhauser, $\underset{\operatorname{arXiv} \operatorname{Xiv}: 2005.06487,}{\operatorname{ar}}$,
3. Lepton-energy moment fit including $\mathcal{O}\left(\alpha_{s}^{3}\right):$ M. Bordone, B. Capdevila, P. Gambino, arXiv:2107.00604.

$$
\underbrace{q^{2}}
$$

$$
\Rightarrow \quad\left|V_{c b}\right|=(42.16 \pm 0.51) \times 10^{-3}
$$

M. Fael, K. Schönwald, M. Steinhauser, arXiv:2205.03410.
5. Extraction of $\left|V_{c b}\right|$ from q^{2}-moments:
F. Bernlochner, M. Fael, K. Olschewsky, E. Persson, R. van Tonder, K. Vos, M. Welsch, arXiv:2205.10274.

$$
\Rightarrow \quad\left|V_{c b}\right|=(41.69 \pm 0.63) \times 10^{-3}
$$

6. ...

Summary

- In the absence (?) of large NP effects in flavour physics, precision calculations are particularly relevant for the SM contributions.
- The measured $B_{s} \rightarrow \mu^{+} \mu^{-}$and $\bar{B} \rightarrow X_{s} \gamma$ branching ratios agree within 1σ with the corresponding SM predictions.
- Further improvement of TH accuracy in $\bar{B} \rightarrow X_{s} \gamma$ requires getting rid of the interpolation in m_{c} at $\mathcal{O}\left(\alpha_{s}^{2}\right)$, as well as resolving the resolved photon issues.
- In the $B_{s} \rightarrow \mu^{+} \mu^{-}$case, the main uncertainty comes from $\left|V_{c b}\right|$.
- Future determinations of $\left|V_{c b}\right|$ from q^{2} moments will hopefully lead to further reduction of uncertainties.

