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Ratios of exclusive semileptonic branching ratios

R(D™) = B(B - D%ti)/B(B — DY uw)
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A ~3.30 deviation from the SM remains.

Large BSM effect or an experimental issue?

=



Deviations from SM predictions in b — s€T£~ transitions?
Recent LHCb measurement of

B(B—K®ptp~)

B(B—K(®*ete)

Ry« =

[arXiv:2212.09153]
1.4 B LHCh | Rx  lowg® = 0.9949094
i 9 fb_l Ry central-g? = 0.94970018
L - Ry low-¢° = (!927?,3?;1
1 R central-¢> = l.(J2Tf3‘I({E
10 } i 4—
0.8 -
1 Data X>=16,p=0812 ¢ =02
0.6 — SM

Ry low-¢° Ry central-¢°  Rp low-¢°  Rp central-g°

low g2: [0.1,1,1] GeV?
central ¢*: [1.1,6.0] GeV?



Deviations from SM predictions in b — s€T£~ transitions?

Recent LHCb measurement of
B(B—K®ptp~)

Sample constraints on the bsll operator Wilson
coefficients from arXiv:2212.10497 by A. Grelio,
J. Salko, A. Smolkovi¢, P. Stangl:

Ry« =

[arXiv:2212.09153] - :
—1.00 4 s —F Ju la
L —— RBp & Rge 1o, 20
1.4 LHCb | Rg  lowq’ = [}_994._;.2:((:;43_ R4 b — spp lo, 2o .
! 9 fb_l Ry central-q® = 0.94973572 - — rare [ decays 1o, 20, 30 |
12] Ry low-g* = 0.92745 T~ N
Tt Ry~ (‘1-7111.1}11-(12 = l(]ZTfﬁ,‘(’g‘; "ET.—' I'
I T I —().4 4 e | .
1.0 I }' i ﬂ
" < : ( U VAl
I { D 0.0 - e
S\alta Y2=16,p=0812, 06 =02 =0 I
0.6 M i | ‘
Ry low-g Ry centralq® Ry lowg® Ry centralg? 0.4 . |

B(B—K(®*ete)

low g2: [0.1,1,1] GeV?
central ¢*: [1.1,6.0] GeV?

a0 =10 —lkG

0.0

(‘umiv.
-



Deviations from SM predictions in b — s€T£~ transitions?

Recent LHCb measurement of

Ry« =

B(B—K®ptp~)

B(B—K(®*ete)

[arXiv:2212.09153]
1.4 B LHCH | Ri  low-¢* = [}..‘}94'_*'2:‘(’,{;?_
[ 9 fb_l Ry central-g? = 0.94970018

r y+0,009
R low-¢& = 0.9277 03

R central-g® = 1.02770 0%

-+

t  Data 2=1.6,p=0812 0 =02
— N
0.6 °
Ry low-¢° Ry central-¢°  Rp low-¢°  Rp central-g°

low g2:

central g>:

[0.1,1,1] GeV?
[1.1,6.0] GeV?

Sample constraints on the bsll operator Wilson
coefficients from arXiv:2212.10497 by A. Grelio,
J. Salko, A. Smolkovi¢, P. Stangl:

1.0 B, — pple
; Jio
—— RBp & Rge 1o, 20 ?
— o
084 b — H_f;'_“ le, 2 X
—— rare I decays 1o, 30, 30
_E‘E —().6 I
3 |
| i
R — i
| i
2, 02 o J
T
0.0 4 s
L |
(12
{].'L T T T T T
—2.0 —1.5 —1.0 —1|.i_] (.10 .5 1.1}
(_-;]uuv_

Possible charm-loop effects that could mimic a deviation in Cémiv:

(a)

Fig. 1 from arXiv:2212.10516 by M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini and M. Valli.

(b)

(c)
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Input parameter update for Bg 4 — A

arXiv:1311.0903 | this talk |source
M, [GeV] 173.1(9) 172.69(30) | PDG’23, https://pdglive.1bl.gov
as(Myz) 0.1184(7) 0.1179(9) | PDG’22, https://pdg.1bl.gov
fB, [GeV] 0.2277(45) 0.2303(13) | FLAG’23, http://flag.unibe.ch
fB, [GeV] 0.1905(42) 0.1900(13) | FLAG’23, http://flag.unibe.ch
|Vep| X 103 42.40(90) 42.16(50) | inclusive, arXiv:2107.00604
|ViiVis| /| Ves| 0.9800(10) 0.9818(5) | derived from UT/it, arXiv:2212.03894
|V;iVia| X 102 0.88(3) 0.859(11) | UT/fit, arXiv:2212.03894
Tsr [Ps] 1.615(21) 1.624(9) | HFLAV’23, https://hflav.web.cern.ch
7 [ps] 1.519(7) 1.519(4) | HFLAV’23, https://hflav.web.cern.ch
B, X 10° 3.65(23) 3.68(12)
Ba, x 1010 1.06(9) 0.99(4)
Sources.of. fs, CKM 1% M, Ol other non- >
uncertainties ! parametric | parametric
By |[1.1% 2.4% 0.6%|0.5% 0.2%| < 0.1% 1.5% | 3.2%
Bay | 1.4% 2.6% 0.3%|0.5% 0.2%| < 0.1% 1.5% | 3.6%




SM predictions for all the branching ratios B, = E(Bg — £1747)
including 2-loop electroweak and 3-loop QCD matching at pug ~ my
[ C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou, M. Steinhauser, arXiv:1311.0903]

B, x 10 = n,,,(8.54 = 0.13) R, R,

B, x 10° = 1,,,(3.65 £ 0.06) Ry, R,
Bor x 107 = 1., (7.73 £ 0.12) Ry, R,
Bge x 10" = 1, (2.48 £ 0.04) Ry Ry,
B, x 10" = 1., (1.06 £ 0.02) R;, Ra,
Bar X 10° = n,,,(2.22 £ 0.04) Ry Ry,

where

< Mt )3.06 (as(MZ)> —0.18

173.1 GeV 0.1184 ’

R _ (fBS[MeV]f( [ Vel )2<|Vtzvts/vcb|>2 Tir [ps]
? 227.7 0.0424 0.980 1.615

Rta

Ry = (de[MeV]>2<I‘QZ‘4dI)2T§‘V [ps]
190.5 0.0088) 1.519
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However, it is larger than :I:O.?)% due to scale-variation of the Wilson coefficient C A( /,Lb) .



Determination of B(B — X,v) in the SM:
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semileptonic phase-space factor

Eight operators QZ matter for Bsy when the NLO EW and/or CKM-suppressed effects are neglected:

Y g
cp cL q q
b, SL bg SL br SL b, SL
Q1,2 Qr Qs Q3,456
current-current photonic dipole gluonic dipole penguin
G2 m? o 8
F b, pole —€m 2 A
Pa) — P * : : . S
b — XPv) = 1 “/ts‘/tb‘ E Ci(1s)Ci (1) Gij (Gij=Gji)
3271 i1
J=

NLO (O(as)) — last missing pieces being evaluated by Tobias Huber and Lars-Thorben Moos
[arXiv:1912.07916]
Most important @ NNLO (O(a?)): G77, G17, Gor
known interpolated
between the M. > my; and M. = 0 limits [arXiv:1503.01791]
= =+ 3% uncertainty in BS}YVI
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Sample diagrams contributing to Go7 @ NNLO:
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1. Generation of diagrams and performing the Dirac algebra to express everything in terms of
(a few) x10° four-loop two-scale scalar integrals with unitarity cuts (O(500) families).

2. Reduction to master integrals (MIs) with the help of Integration By Parts (IBP) [KIRA].
O(1TB) RAM and weeks of CPU needed for the most complicated families.

3. Extending the set of master integrals M, L so that it closes under differentiation

with respect to Z — mi / m% . This way one obtains a system of differential equations
d
— My (z,€) = g Ry (z, €) Mi(z,€), (%)
dz l

where Rnk: are rational functions of their arguments.
4. Calculating boundary conditions for (x) using automatized asymptotic expansions at 77 > my .
5. Calculating three-loop single-scale master integrals for the boundary conditions.

6. Solving the system (*) numerically [A.C. Hindmarsch, http://www.netlib.org/odepack]
along an ellipse in the complex Z plane. Doing so along several different
ellipses allows us to estimate the numerical error.
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Another approach to bare 2-body contributions in arXiv:2309.14707

[M. Czaja, M. Czakon, T. Huber, M. Misiak, M. Niggetiedt, A. Rehman, K. Schénwald, M. Steinhauser]

The MIs are numerically calculated at the physical value of m. using AMFlow [arXiv:2201.11669].
Thus, no expansions in the limit m. > m; need to be determined. We have tested them though.

UV and IR divergences are dimensionally regulated. The 2-body contributions alone are not IR safe.

ol

a P — (112 oz 1(2
Sample result: A21Gg27)2 (2) = 238, + 736 232‘:21”( ) L (% + 272 W) + p(z),

where p(z = 0.04) ~ 144.959811.

The large-z expansion of p(z) reads:

__ 138530 __ 3680 __ 6136 5744 72 _ 1808 73 | 1 (_ 4222952 _ 602852 34568 r2 _ 532 13
p(z) = 6561 729 ¢(3) sas Lt 39 L 79 L~ T3 ( 1366875 — 273ars L T Tsa2s L 1215 L )

1 33395725469
+32 (-

_ 111861263L + 156358L2 172 L3

1 . _
26254935000 93767625 178605 1215 ) +0 (?) »  with L = log z.



2-body contributions from vertex diagrams
in arXiV:2303.01714 [C. Greub, H.M. Asatrian, F. Saturnino, C. Wiegand]|

and arXiV:2309.14706 [M. Fael, F. Lange, K. Schénwald, M. Steinhauser]
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AN R S

. Fully analytical solutions at the two-loop level in arXiv:2309.14706.



Resolved photon contribution to the Q7-Q; 2 interference.

M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Riickl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.
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wy <> gluon momentum,

The soft function hq7:
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Constraints on moments (e.g.): [ dwihir = %p%, [ dwiw?hy7 = 12—5(5m5 + 3mg — 2my).
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G+P numerically:
A7 € [—24,5] MeV for m, = 1.17 GeV.

Factor-of-3 improvement w.r.t. BLNP.

In our code: Ky = 1.2 + 0.3 .
Warning: scheme for m_!



Moment constraints vs. models of hy~7

M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012 — only the leading moment included.
A. Gunawardana, G. Paz, arXiv:1908.02812 — estimates of the subleading moments from LLSA included.

M. Benzke, T. Hurth, arXiv:2006.00624 — as above but with more generous modeling
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Another recent contribution: clarifying the SCET treatment of resolved photons in the Qg-Qs
interference; T. Hurth and R. Szafron, arXiv:2301.01739.



Inclusive determinations of |V with O(a?) effects.

_ as as 2 as 3
I'(B — X.ev) = Tof(p) [1 +a;— + ay (—) + a3 < ) (1)
0 0 0
1 Qg 2
— <——P1—>N—+ <90+91—> re —|—d0pD 0@4— ]
2 T b b m; b

GZm? . |Vo|?A
F""pkinl Ycbl “lew —2 2
T : f(p) =1—8p+8p® — p* — 12p2In p, p = mc(uc)/mb’kin.

FOZ

1. Evaluation of a3z: M. Fael, K. Schonwald, M. Steinhauser, arXiv:2011.13654.

m .
2. Finding i up to O(a?): M. Fael, K. Schonwald, M. Steinhauser, arXiv:2005.06487,

Mp,pole arXiv:2011.11655.

3. Lepton-energy moment fit including (9(042): M. Bordone, B. Capdevila, P. Gambino, arXiv:2107.00604.

= |V = (42.164+0.51) x 1073

q2

4. Evaluation of several el invariant mass squared moments up to O(a?):
M. Fael, K. Schonwald, M. Steinhauser, arXiv:2205.03410.

5. Extraction of |Vg| from g*-moments:
F. Bernlochner, M. Fael, K. Olschewsky, E. Persson, R. van Tonder, K. Vos, M. Welsch, arXiv:2205.10274.
= |Ve| = (41.69+£0.63) x 1073



Summary

® In the absence (?) of large NP effects in flavour physics, precision
calculations are particularly relevant for the SM contributions.

® The measured B, — utpu~ and B — X,v branching ratios
agree within 1o with the corresponding SM predictions.

® Further improvement of TH accuracy in B — X v requires getting rid
of the interpolation in m, at O(a?), as well as resolving the resolved
photon issues.

® In the B, — putu~ case, the main uncertainty comes from |V_|.

® Future determinations of |V,| from ¢ moments will hopefully lead

to further reduction of uncertainties.



