High precision prediction for multi-scale processes at the LHC

Rene Poncelet

Presented research received funding from:

LEVERHULME TRUST _____

Isaac

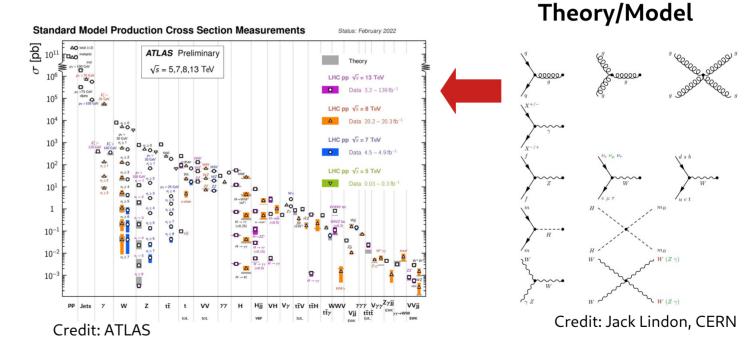
Trust

Newton

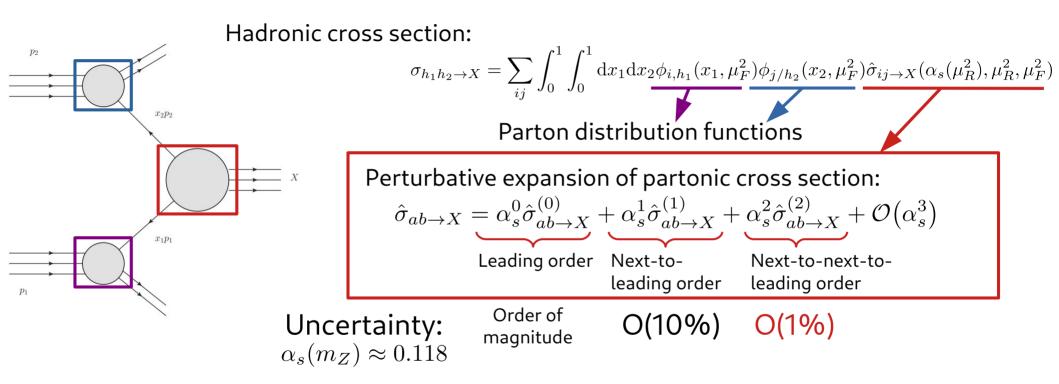
What are the fundamental building blocks of matter?

Scattering experiments

Credit: CERN



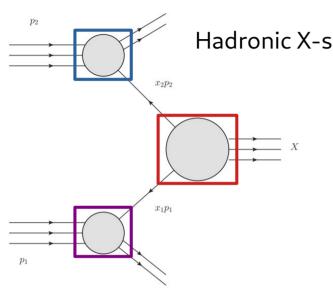
Precision through higher orders



Next-to-next-to-leading order QCD needed to match experimental precision!

→ In some cases even next-to-next-to-leading order!

Hadronic cross section in collinear factorization – NNLO QCD



Hadronic X-section: $\sigma_{h_1h_2 \to X} = \sum_{ij} \int_0^1 \int_0^1 dx_1 dx_2 \underline{\phi_{i,h_1}(x_1, \mu_F^2)} \underline{\phi_{j/h_2}(x_2, \mu_F^2)} \underline{\hat{\sigma}_{ij \to X}(\alpha_s(\mu_R^2), \mu_R^2, \mu_F^2)}$

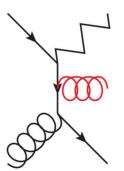
Parton distribution functions

Perturbative expansion of partonic cross section:

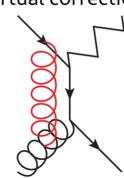
$$\hat{\sigma}_{ab\to X} = \hat{\sigma}_{ab\to X}^{(0)} + \hat{\sigma}_{ab\to X}^{(1)} + \hat{\sigma}_{ab\to X}^{(2)} + \mathcal{O}(\alpha_s^3)$$

The NLO bit:
$$\hat{\sigma}_{ab}^{(1)} = \hat{\sigma}_{ab}^{\mathrm{R}} + \hat{\sigma}_{ab}^{\mathrm{V}} + \hat{\sigma}_{ab}^{\mathrm{C}}$$

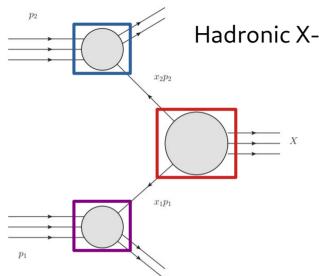
Real radiation

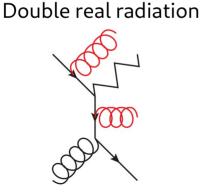


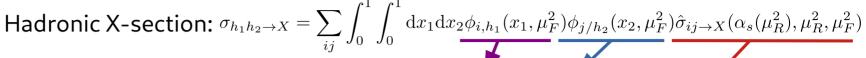
Virtual correction



Hadronic cross section in collinear factorization – NNLO QCD







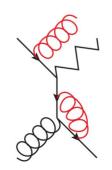
Parton distribution functions

Perturbative expansion of partonic cross section:

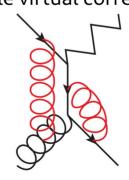
$$\hat{\sigma}_{ab\to X} = \hat{\sigma}_{ab\to X}^{(0)} + \hat{\sigma}_{ab\to X}^{(1)} + \hat{\sigma}_{ab\to X}^{(2)} + \mathcal{O}(\alpha_s^3)$$

The NNLO bit:
$$\hat{\sigma}_{ab}^{(2)} = \hat{\sigma}_{ab}^{\mathrm{RR}} + \hat{\sigma}_{ab}^{\mathrm{RV}} + \hat{\sigma}_{ab}^{\mathrm{VV}} + \hat{\sigma}_{ab}^{\mathrm{C2}} + \hat{\sigma}_{ab}^{\mathrm{C1}}$$

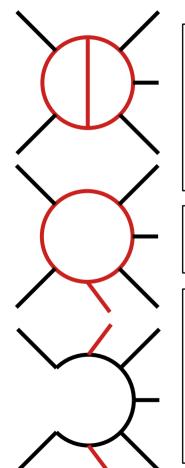
Real/Virtual correction



Double virtual corrections



NNLO QCD for 2→3 processes - inputs



Two-loop amplitudes

- (Non-) planar 5 point massless external states
 [Chawdry'19'20'21,Abreu'20'21'23,Agarwal'21'23,Badger'21'23]
 - → triggered by efficient MI representation [Chicherin'20]
- 5 point with one external mass [Abreu'20,Syrrakos'20,Canko'20,Badger'21'22,Chicherin'22]

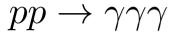
One-loop amplitudes → OpenLoops [Buccioni'19]

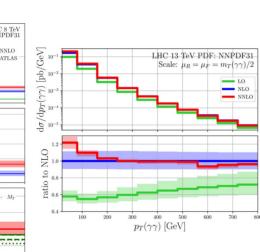
Many legs and IR stable (soft and collinear limits)

Double-real Born amplitudes → AvHlib[Bury'15]

IR finite cross-sections → NNLO subtraction schemes
 qT-slicing [Catani'07], N-jettiness slicing [Gaunt'15/Boughezal'15], Antenna [Gehrmann'05-'08],
 Colorful [DelDuca'05-'15], Projetction [Cacciari'15], Geometric [Herzog'18],
 Unsubtraction [Aguilera-Verdugo'19], Nested collinear [Caola'17],
 Local Analytic [Magnea'18], Sector-improved residue subtraction [Czakon'10-'14,'19]

NNLO QCD cross sections for massless 2 → 3 processes

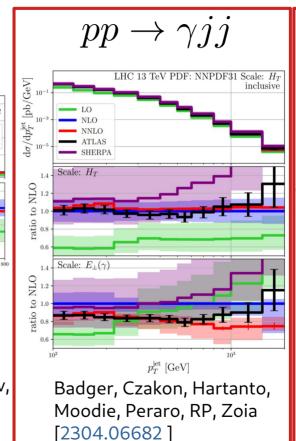




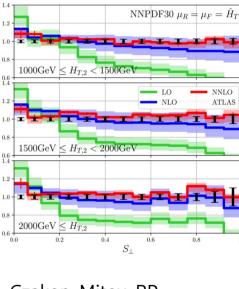
 $pp \rightarrow \gamma \gamma j$

 $m(\gamma_1, \gamma_2, \gamma_3)$ [GeV]

Kallweit, Sotnikov, Wiesemann [2010.04681] Chawdhry, Czakon, Mitov, RP [2103.04319]



 $pp \rightarrow jjj$



Czakon, Mitov, RP [2106.05331]

+ Alvarez, Cantero, Llorente

[2301.01086]

Multi-jet observables

Test of pQCD and extraction of strong coupling constant NLO theory unc. > experimental unc.

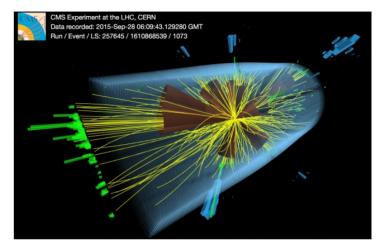
- NNLO QCD needed for precise theory-data comparisons
 - → Restricted to two-jet data [Currie'17+later][Czakon'19]
- New NNLO QCD three-jet → access to more observables
 - Jet ratios

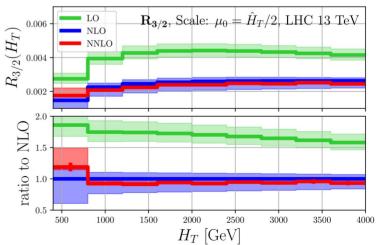
Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC Czakon, Mitov, Poncelet [2106.05331]

$$R^{i}(\mu_{R}, \mu_{F}, PDF, \alpha_{S,0}) = \frac{d\sigma_{3}^{i}(\mu_{R}, \mu_{F}, PDF, \alpha_{S,0})}{d\sigma_{2}^{i}(\mu_{R}, \mu_{F}, PDF, \alpha_{S,0})}$$

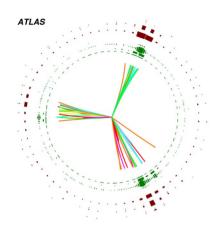
Event shapes

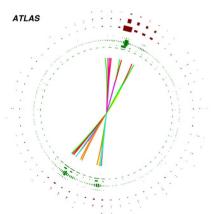
NNLO QCD corrections to event shapes at the LHC Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet [2301.01086]





Encoding QCD dynamics in event shapes





Using (global) event information to separate different regimes of QCD event evolution:

- Thrust & Thrust-Minor $T_{\perp} = \frac{\sum_{i} |\vec{p}_{T,i} \cdot \hat{n}_{\perp}|}{\sum_{i} |\vec{p}_{T,i}|}$, and $T_{m} = \frac{\sum_{i} |\vec{p}_{T,i} \times \hat{n}_{\perp}|}{\sum_{i} |\vec{p}_{T,i}|}$.
- Energy-energy correlators

$$\frac{1}{\sigma_2} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\Delta\phi} = \frac{1}{\sigma_2} \sum_{ij} \int \frac{\mathrm{d}\sigma \ x_{\perp,i} x_{\perp,j}}{\mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij}} \delta(\cos\Delta\phi - \cos\Delta\phi_{ij}) \mathrm{d}x_{\perp,i} \mathrm{d}x_{\perp,j} \mathrm{d}\cos\Delta\phi_{ij},$$

Separation of energy scales: $H_{T,2} = p_{T,1} + p_{T,2}$

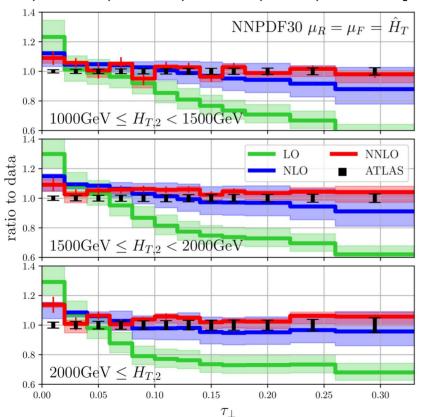
Ratio to 2-jet: $R^i(\mu_R,\mu_F,\mathrm{PDF},\alpha_{S,0}) = \frac{\mathrm{d}\sigma_3^i(\mu_R,\mu_F,\mathrm{PDF},\alpha_{S,0})}{\mathrm{d}\sigma_2^i(\mu_R,\mu_F,\mathrm{PDF},\alpha_{S,0})}$

Here: use jets as input → experimentally advantageous (better calibrated, smaller non-pert.)

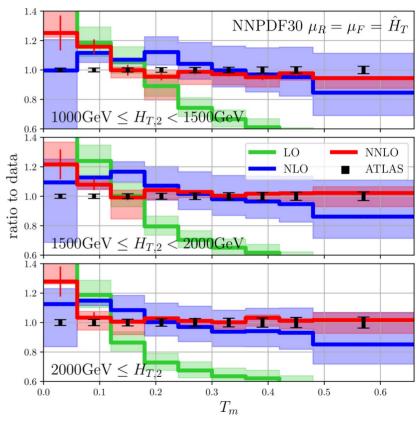
Transverse Thrust @ NNLO QCD

NNLO QCD corrections to event shapes at the LHC

Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet [2301.01086]



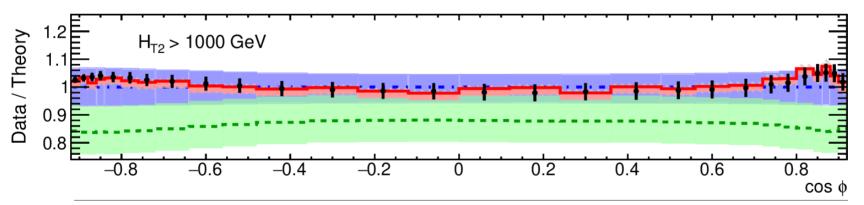
ATLAS [2007.12600]



The transverse energy-energy correlator

$$\frac{1}{\sigma_2} \frac{d\sigma}{d\cos\Delta\phi} = \frac{1}{\sigma_2} \sum_{ij} \int \frac{d\sigma \ x_{\perp,i} x_{\perp,j}}{dx_{\perp,i} dx_{\perp,j} d\cos\Delta\phi_{ij}} \delta(\cos\Delta\phi - \cos\Delta\phi_{ij}) dx_{\perp,i} dx_{\perp,j} d\cos\Delta\phi_{ij},$$

- Insensitive to soft radiation through energy weighting $x_{T,i} = E_{T,i} / \sum_j E_{T,j}$ • Event topology separation:
- Central plateau contain isotropic events
 - To the right: self-correlations, collinear and in-plane splitting
 - To the left: back-to-back



[ATLAS 2301.09351]

ATLAS

Particle-level TEEC √s = 13 TeV; 139 fb⁻¹

anti-
$$k_t R = 0.4$$

$$p_{_{
m T}} > 60~{
m GeV}$$

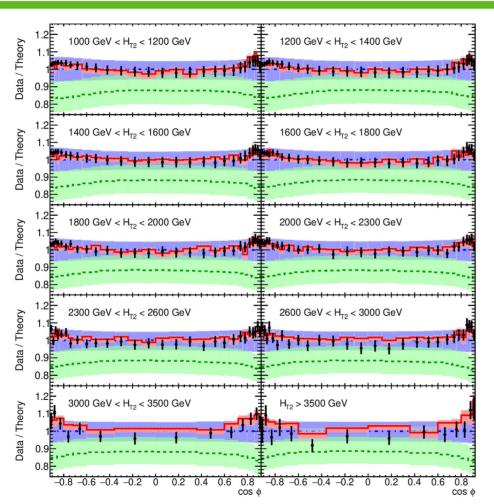
$$|\eta| < 2.4$$

$$\mu_{R,F} = \mathbf{\hat{H}}_T$$

$$\alpha_{\rm s}({\rm m_{_{7}}}) = 0.1180$$

NNPDF 3.0 (NNLO)

Double differential TEEC



[ATLAS 2301.09351]

ATLAS

Particle-level TEEC

$$\sqrt{s}$$
 = 13 TeV; 139 fb⁻¹

anti-
$$k_t R = 0.4$$

$$p_{_{\rm T}} > 60~{\rm GeV}$$

$$|\eta| < 2.4$$

$$\mu_{R,F}={\bf \hat{H}}_T$$

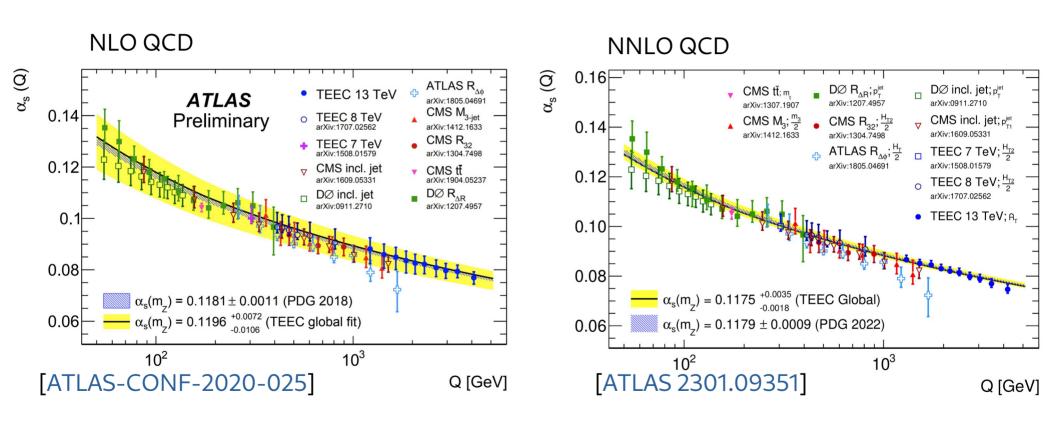
$$\alpha_s(m_{_{\! 7}}) = 0.1180$$

NNPDF 3.0 (NNLO)

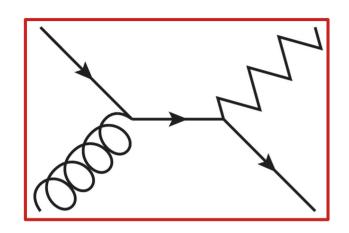
- Data

NNLO

Running of $\alpha_{\mathbf{S}}$

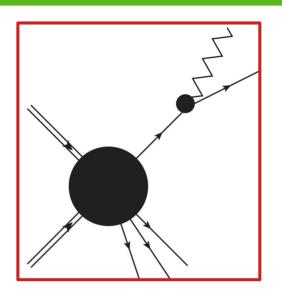


Prompt photon production



Direct production

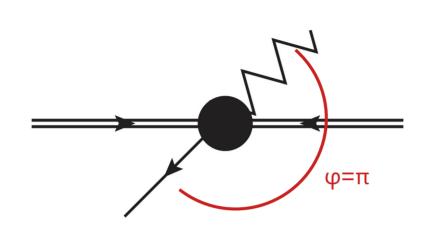
- Test of perturbative QCD
- Gluon PDF sensitivity
- Estimates for BSM backgrounds

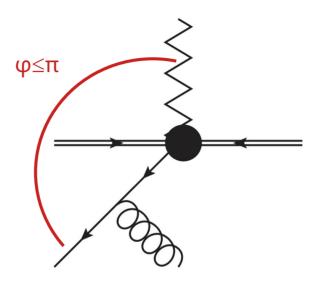


Fragmentation

- Depends on non-perturbative fragmentation functions
- Separation from "direct" not unique

Why photon plus a jet pair?





- Non-back-to-back Born configurations
 → access to angular correlations between the photon and jets
- Access to different kinematic regimes through distinguishable photon
 ⇒ enhance direct, high- or low-z fragmentation
- Background process for BSM: $pp o \gamma + Y(o jj)$

Photon plus jet pair

Measurement of isolated-photon plus two-jet production in pp collisions at sqrt(s) = 13 TeV with the ATLAS detector [1912.09866]

Requirements on photon	$E_{\rm T}^{\gamma} > 150 \text{ GeV}, \eta^{\gamma} < 2.37 \text{ (excluding } 1.37 < \eta^{\gamma} < 1.56)$		
	$E_{\rm T}^{\rm iso} < 0.0042 \cdot E_{\rm T}^{\gamma} + 4.8 \text{ GeV (reconstruction level)}$		
	$E_{\rm T}^{\rm iso} < 0.0042 \cdot E_{\rm T}^{\gamma} + 10 \text{ GeV (particle level)}$		
Requirements on jets	at least two jets using anti- k_t algorithm with $R = 0.4$		
	$p_{\rm T}^{\rm jet} > 100 \text{ GeV}, y^{\rm jet} < 2.5, \Delta R^{\gamma - \rm jet} > 0.8$		
Phase space /	total	fragmentation enriched	direct enriched
		$E_{ m T}^{\gamma} < p_{ m T}^{ m jet2}$	$E_{\mathrm{T}}^{\gamma} > p_{\mathrm{T}}^{\mathrm{jet1}}$
Number of events	755 270	111 666	386 846

Modelled with hybrid isolation

$$E_{\perp}(r) \le E_{\perp \max}(r) = 0.1 \, E_{\perp}(\gamma) \left(\frac{1 - \cos(r)}{1 - \cos(R_{\max})}\right)^2 \quad \text{for} \quad r \le R_{\max} = 0.1$$

$$E_{\perp}(r) \le E_{\perp \max} = 0.0042 \, E_{\perp}(\gamma) + 10 \, \text{GeV} \quad \text{for} \quad r \le R_{\max} = 0.4$$

No fragmentation contribution

- → Purely pQCD through NNLO
- → focus on "inclusive" and "direct" PS

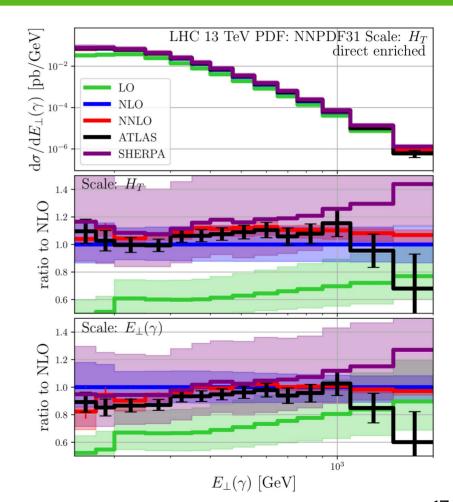
Theory - data comparisons

NNLO QCD

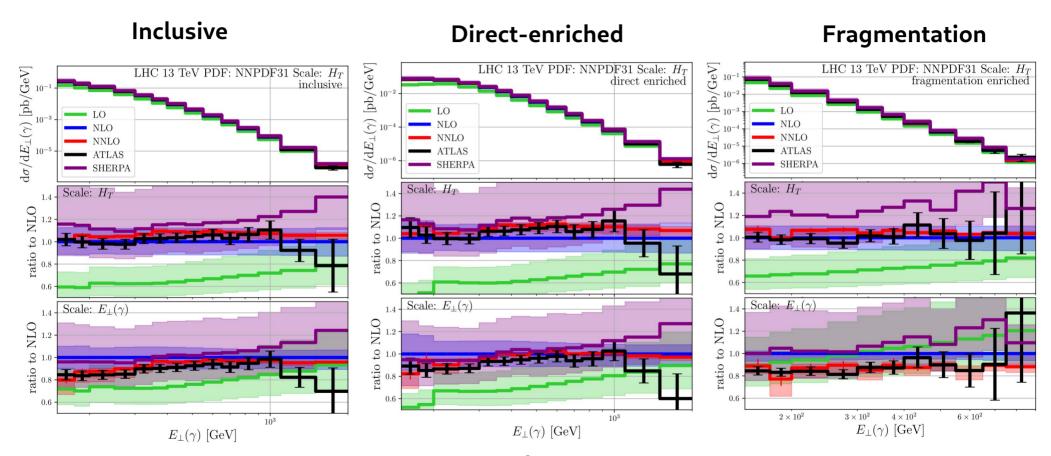
- Describes data well
- Improvements on the shape
- Small corrections
- Small remaining scale dependence

Comment on the SHERPA predictions

- Large NLO scale uncertainties
- The shape is not well described
- Maybe an artefact of multi-jet merging?



Inclusive vs. direct vs. fragmentation



Transverse photon energy

Scale choice

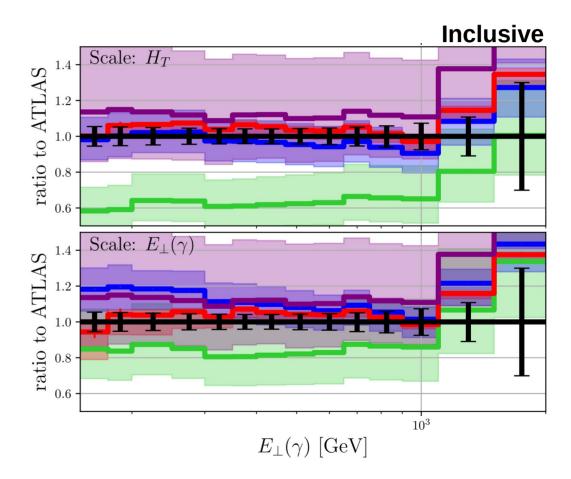
Full tree kinematics
$$\mu_R=\mu_F=H_T=E_\perp(\gamma)+p_T(j_1)+p_T(j_2)$$

$$\mu_R=\mu_F=E_\perp(\gamma)\;,$$
 Only photon

Perturbative convergence

NNLO result similar **but** $E_{\perp}(\gamma)$

- Larger (negative) NNLO corrections
- Larger scale dependence (for jet obs.)



Scale choice

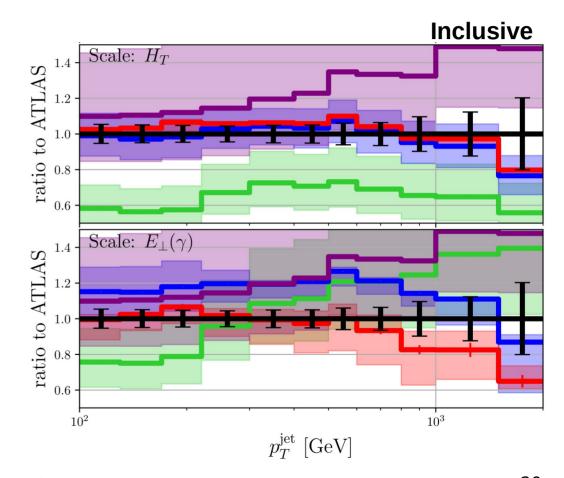
Full tree kinematics
$$\mu_R=\mu_F=H_T=E_\perp(\gamma)+p_T(j_1)+p_T(j_2)$$

$$\mu_R=\mu_F=E_\perp(\gamma)\;,$$
 Only photon

Perturbative convergence

NNLO result similar **but** $E_{\perp}(\gamma)$

- Larger (negative) NNLO corrections
- Larger scale dependence (for jet obs.)

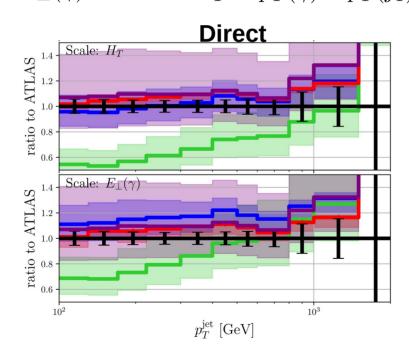


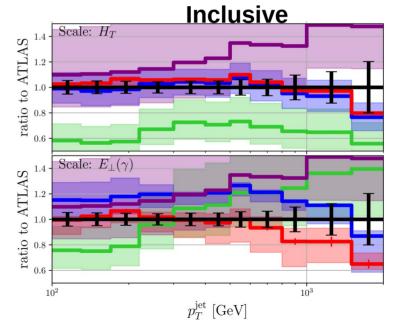
Scale choice

 $E_{\perp}(\gamma)$ does not capture relevant scales for $pp \rightarrow \gamma + 2j$

• Better for "direct" enriched phase space $p_T(\gamma) > p_T(j_1)$ $\Rightarrow E_{\perp}(\gamma)$ closer to $H_T = p_T(\gamma) + p_T(j_1) + p_T(j_2)$

NNLO QCD needed for this conclusion





Take home messages

- Very good description of data using NNLO QCD
 - → Significantly improved theory uncertainty estimates
 - → First phenomenological applications: extraction of the strong coupling constant

Completion of massless 2→ 3 processes at hadron colliders through NNLO QCD

$$pp \to \gamma \gamma \gamma$$

$$pp \rightarrow \gamma \gamma \gamma$$

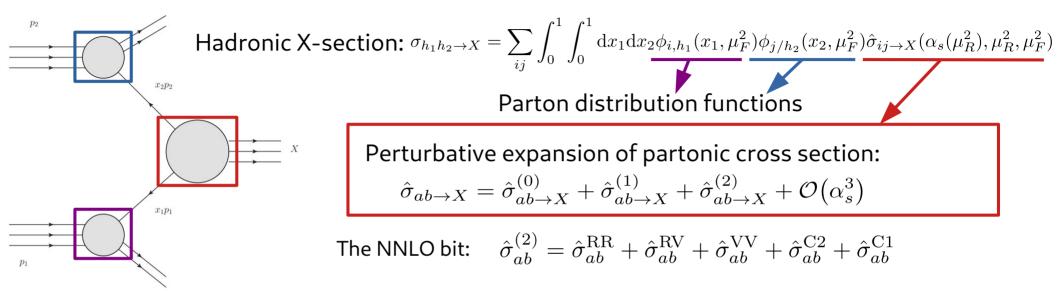
$$pp \rightarrow \gamma \gamma \gamma \qquad pp \rightarrow \gamma \gamma j \qquad pp \rightarrow \gamma j j \qquad pp \rightarrow j j j$$

$$pp \rightarrow jjj$$

- Most important bottlenecks:
 - → Monte Carlo integration of real radiation contributions → improved methods needed!
 - → Two-loop amplitudes (including external/internal masses are the current frontier)

Backup

Hadronic cross section



Parton distribution functions

Perturbative expansion of partonic cross section:

$$\hat{\sigma}_{ab\to X} = \hat{\sigma}_{ab\to X}^{(0)} + \hat{\sigma}_{ab\to X}^{(1)} + \hat{\sigma}_{ab\to X}^{(2)} + \mathcal{O}(\alpha_s^3)$$

The NNLO bit: $\hat{\sigma}_{ab}^{(2)} = \hat{\sigma}_{ab}^{\mathrm{RR}} + \hat{\sigma}_{ab}^{\mathrm{RV}} + \hat{\sigma}_{ab}^{\mathrm{VV}} + \hat{\sigma}_{ab}^{\mathrm{C2}} + \hat{\sigma}_{ab}^{\mathrm{C1}}$

Double real radiation

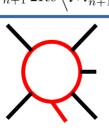
Real/Virtual correction

Double virtual corrections

$$\hat{\sigma}_{ab}^{RR} = \frac{1}{2\hat{s}} \int d\Phi_{n+2} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle F_{n+2}$$

$$\hat{\sigma}_{ab}^{RV} = \frac{1}{2\hat{s}} \int d\Phi_{n+1} 2Re \left\langle \mathcal{M}_{n+1}^{(0)} \middle| \mathcal{M}_{n+1}^{(1)} \right\rangle F_{n+1}$$

$$\hat{\sigma}_{ab}^{VV} = \frac{1}{2\hat{s}} \int d\Phi_{n} \left(2Re \left\langle \mathcal{M}_{n}^{(0)} \middle| \mathcal{M}_{n}^{(2)} \right\rangle + \left\langle \mathcal{M}_{n}^{(1)} \middle| \mathcal{M}_{n}^{(1)} \right\rangle \right) F_{n}$$



Partonic cross section beyond LO

Perturbative expansion of partonic cross section:
$$\hat{\sigma}_{ab\to X} = \hat{\sigma}_{ab\to X}^{(0)} + \hat{\sigma}_{ab\to X}^{(1)} + \hat{\sigma}_{ab\to X}^{(2)} + \mathcal{O}(\alpha_s^3)$$

Contributions with different multiplicities and # convolutions:

$$\hat{\sigma}_{ab}^{(2)} = \underline{\hat{\sigma}_{ab}^{\mathrm{RR}} + \hat{\sigma}_{ab}^{\mathrm{RV}} + \hat{\sigma}_{ab}^{\mathrm{VV}} + \hat{\sigma}_{ab}^{\mathrm{C2}} + \hat{\sigma}_{ab}^{\mathrm{C1}}}$$

$$\hat{\sigma}_{ab}^{RR} = \frac{1}{2\hat{s}} \int d\Phi_{n+2} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle F_{n+2}$$

$$\hat{\sigma}_{ab}^{\mathrm{RV}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+1} \, 2\mathrm{Re} \left\langle \mathcal{M}_{n+1}^{(0)} \middle| \mathcal{M}_{n+1}^{(1)} \right\rangle \mathrm{F}_{n+1}$$

 $\hat{\sigma}_{ab}^{\text{VV}} = \frac{1}{2\hat{s}} \int d\Phi_n \left(2\text{Re} \left\langle \mathcal{M}_n^{(0)} \middle| \mathcal{M}_n^{(2)} \right\rangle + \left\langle \mathcal{M}_n^{(1)} \middle| \mathcal{M}_n^{(1)} \right\rangle \right) F_n$

Each term separately IR divergent. But sum is:

- → finite
- → regularization scheme independent

Considering CDR ($d = 4 - 2\epsilon$):

→ Laurent expansion:

$$4-2\epsilon$$
): $\hat{\sigma}^C_{ab}=\sum_{i=-4}^0 c_i \epsilon^i + \mathcal{O}(\epsilon)$

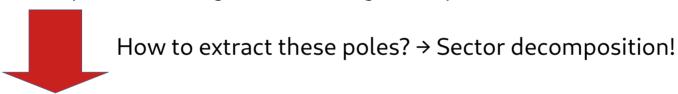
 $\hat{\sigma}_{ab}^{C1} = (\text{single convolution}) F_{n+1}$

$$\hat{\sigma}_{ab}^{C2} = \text{(double convolution) } \mathbf{F}_n$$

Sector decomposition I

Considering working in CDR:

- → Virtuals are usually done in this regularization
- → Real radiation:
 - → Very difficult integrals, analytical impractical (except very simple cases)!
 - → Numerics not possible, integrals are divergent: ε-poles!



Divide and conquer the phase space:

$$1 = \sum_{i,j} \left[\sum_{k} \mathcal{S}_{ij,k} + \sum_{k,l} \mathcal{S}_{i,k;j,l} \right] \qquad \hat{\sigma}_{ab}^{\mathrm{RR}} = \frac{1}{2\hat{s}} \int d\Phi_{n+2} \sum_{i,j} \left[\sum_{k} \mathcal{S}_{ij,k} + \sum_{k,l} \mathcal{S}_{i,k;j,l} \right] \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle F_{n+2}$$

Sector decomposition II

Divide and conquer the phase space:

- \Rightarrow Each $\mathcal{S}_{ij,k}/\mathcal{S}_{i,k;j,l}$ has simpler divergences. appearing as $1/s_{ijk}$ $1/s_{ik}/s_{jl}$ Soft and collinear (w.r.t parton k,l) of partons i and j
- → Parametrization w.r.t. reference parton:

$$\hat{\eta}_i = \frac{1}{2}(1 - \cos\theta_{ir}) \in [0, 1]$$
 $\hat{\xi}_i = \frac{u_i^0}{u_{\text{max}}^0} \in [0, 1]$

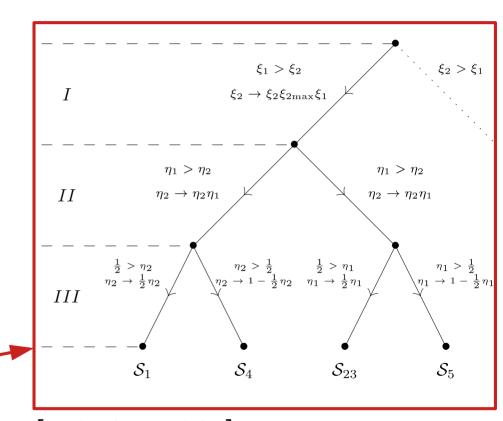
→ Subdivide to factorize divergences

$$s_{u_1 u_2 k} = (p_k + u_1 + u_2)^2 \sim \hat{\eta}_1 u_1^0 + \hat{\eta}_2 u_2^0 + \hat{\eta}_3 u_1^0 u_2^0$$

→ double soft factorization:

$$\theta(u_1^0 - u_2^0) + \theta(u_2^0 - u_1^0)$$

→ triple collinear factorization



[Czakon'10,Caola'17]

Sector decomposition III

Factorized singular limits in each sector:

$$\frac{1}{2\hat{s}} \int d\Phi_{n+2} \, \mathcal{S}_{kl,m} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle \mathcal{F}_{n+2} = \sum_{\text{sub-sec.}} \int d\Phi_n \prod dx_i \underbrace{x_i^{-1-b_i\epsilon}}_{\text{singular}} d\tilde{\mu}(\{x_i\}) \underbrace{\prod x_i^{a_i+1} \left\langle \mathcal{M}_{n+2} \middle| \mathcal{M}_{n+2} \right\rangle}_{\text{regular}} \mathcal{F}_{n+2}$$

Regularization of divergences:

$$x^{-1-b\epsilon} = \underbrace{\frac{-1}{b\epsilon}}_{\text{pole term}} + \underbrace{\left[x^{-1-b\epsilon}\right]_{+}}_{\text{reg. + sub.}}$$

$$\int_0^1 dx \left[x^{-1-b\epsilon} \right]_+ f(x) = \int_0^1 \frac{f(x) - f(0)}{x^{1+b\epsilon}}$$

Finite NNLO cross section

$$\hat{\sigma}_{ab}^{RR} = \frac{1}{2\hat{s}} \int d\Phi_{n+2} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle F_{n+2}$$

$$\hat{\sigma}_{ab}^{C1} = (\text{single convolution}) \, \mathbf{F}_{n+1}$$

$$\hat{\sigma}_{ab}^{\text{RV}} = \frac{1}{2\hat{s}} \int d\Phi_{n+1} \, 2\text{Re} \left\langle \mathcal{M}_{n+1}^{(0)} \middle| \mathcal{M}_{n+1}^{(1)} \right\rangle F_{n+1}$$

$$\hat{\sigma}_{ab}^{C2} = (\text{double convolution}) \, \mathbf{F}_n$$

$$\hat{\sigma}_{ab}^{VV} = \frac{1}{2\hat{s}} \int d\Phi_n \left(2 \operatorname{Re} \left\langle \mathcal{M}_n^{(0)} \middle| \mathcal{M}_n^{(2)} \right\rangle + \left\langle \mathcal{M}_n^{(1)} \middle| \mathcal{M}_n^{(1)} \right\rangle \right) F_n$$

sector decomposition and master formula

$$x^{-1-b\epsilon} = \underbrace{\frac{-1}{b\epsilon}}_{\text{pole term}} + \underbrace{[x^{-1-b\epsilon}]_{+}}_{\text{reg. + sub.}}$$

$$\left(\sigma_F^{RR},\sigma_{SU}^{RR},\sigma_{DU}^{RR}\right) \quad \left(\sigma_F^{RV},\sigma_{SU}^{RV},\sigma_{DU}^{RV}\right) \quad \left(\sigma_F^{VV},\sigma_{DU}^{VV},\sigma_{FR}^{VV}\right) \quad \left(\sigma_{SU}^{C1},\sigma_{DU}^{C1}\right) \quad \left(\sigma_{DU}^{C2},\sigma_{FR}^{C2}\right)$$

re-arrangement of terms → 4-dim. formulation [Czakon'14, Czakon'19]

$$\begin{array}{c|c} \left(\sigma_F^{RR}\right) & \left(\sigma_F^{RV}\right) & \left(\sigma_F^{VV}\right) & \left(\sigma_{SU}^{RR},\sigma_{SU}^{RV},\sigma_{SU}^{C1}\right) & \left(\sigma_{DU}^{RR},\sigma_{DU}^{RV},\sigma_{DU}^{VV},\sigma_{DU}^{C1},\sigma_{DU}^{C2}\right) & \left(\sigma_{FR}^{RV},\sigma_{FR}^{VV},\sigma_{FR}^{C2}\right) \end{array}$$

separately finite: ε poles cancel

C++ framework

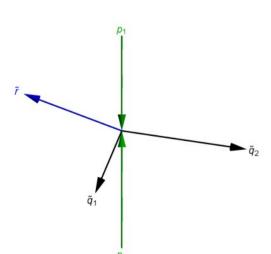
- Formulation allows efficient algorithmic implementation
- High degree of automation:
 - Partonic processes (taking into account all symmetries)
 - Sectors and subtraction terms
 - Interfaces to Matrix-element providers: AvH, OpenLoops, Recola, NJET, HardCoded
 - → Only two-loop matrix elements required
- Broad range of applications through additional facilities:
 - Narrow-Width & Double-Pole Approximation
 - Fragmentation
 - Polarised intermediate massive bosons
 - (Partial) Unweighting → Event generation for HighTEA
 - Interfaces: FastNLO, FastJet

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

$$\{P, r_j, u_k\} \to \left\{\tilde{P}, \tilde{r}_j\right\}$$



Requirements:

- Keep direction of reference r fixed
- Invertible for fixed : u_i $\left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \left\{P, r_j, u_k\right\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} \sum_{i=1}^{n_{fr}} \tilde{r}_j$

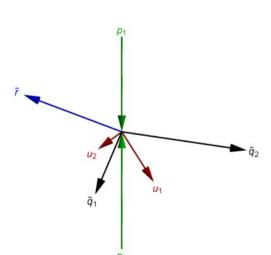
- Generate Born configuration
- Generate unresolved partons
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

$$\{P, r_j, u_k\} \to \left\{\tilde{P}, \tilde{r}_j\right\}$$



Requirements:

- Keep direction of reference r fixed
- Invertible for fixed : u_i $\left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \left\{P, r_j, u_k\right\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} \sum_{i=1}^{n_{fr}} \tilde{r}_j$

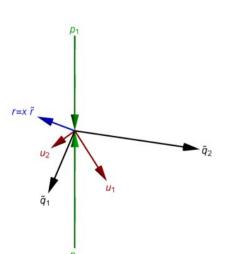
- Generate Born configuration
- Generate unresolved partons
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

$$\{P, r_j, u_k\} \to \left\{\tilde{P}, \tilde{r}_j\right\}$$



Requirements:

Keep direction of reference r fixed

• Invertible for fixed :
$$u_i$$
 $\left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \left\{P, r_j, u_k\right\}$
• Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} - \sum_{i=1}^{n_{fr}} \tilde{r}_j$

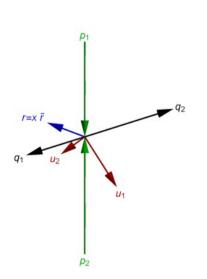
- Generate Born configuration
- Generate unresolved partons
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space:

$$\{P, r_j, u_k\} \to \left\{\tilde{P}, \tilde{r}_j\right\}$$



Requirements:

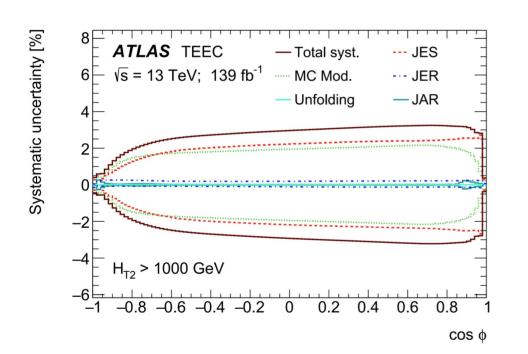
Keep direction of reference r fixed

• Invertible for fixed : u_i $\left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \left\{P, r_j, u_k\right\}$ • Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} - \sum_{i=1}^{n_{fr}} \tilde{r}_j$

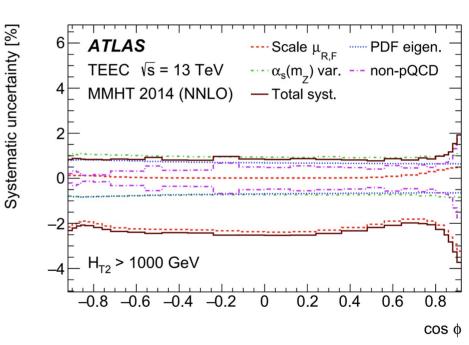
- Generate Born configuration
- Generate unresolved partons
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

Systematic Uncertainties TEEC

Experimental uncertainties

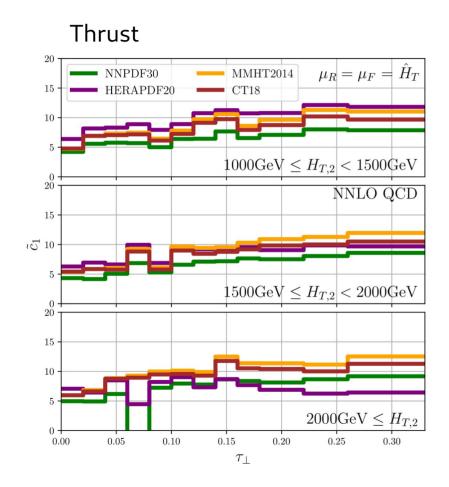


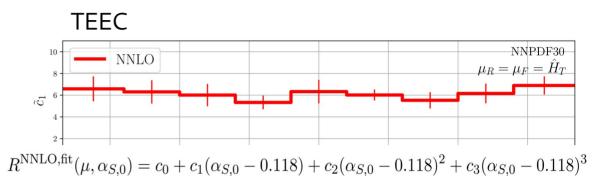
Theory uncertainties



Scale dependence is the dominating uncertainty \rightarrow NNLO QCD required to match exp.

Strong coupling dependence





mostly linear dependence

Visualisation of α_S dependence

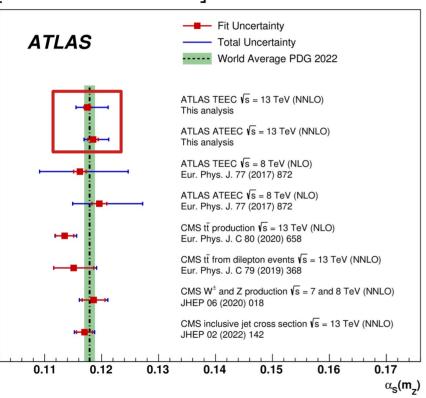
$$\tilde{c}_1 = \frac{c_1}{R^{\text{NNLO}}(\alpha_{S,0} = 0.118)}$$

For comparison:

scale dependence (dominant theory uncertainty)

$\alpha_{\mathbf{S}}$ from TEEC @ NNLO by ATLAS

[ATLAS 2301.09351]



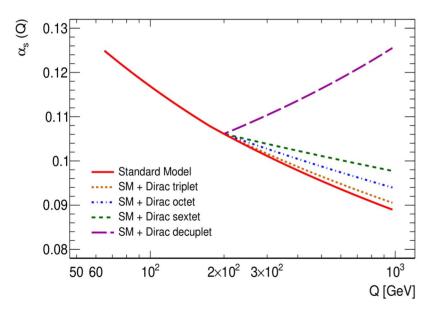
- NNLO QCD extraction from multi-jets → will contribute to PDG for the first time
- Significant improvement to 8 TeV
 → driven by NNLO QCD corrections
- Individual precision large but comparable to top or jets-data.
- However: extraction at high energy scales

Using the running of $\alpha_{\mathbf{S}}$ to probe NP

[Llorente, Nachman 1807.00894]

Indirect constraints to NP through modified running:

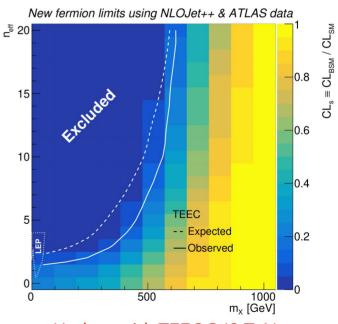
$$\alpha_s(Q) = \frac{1}{\beta_0 \log z} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\log(\log z)}{\log z} \right]; \quad z = \frac{Q^2}{\Lambda_{\text{OCD}}^2}$$



ATLAS TEEC @ 7 TeV data

$$\beta_0 = \frac{1}{4\pi} \left(11 - \frac{2}{3} n_f - \frac{4}{3} n_X T_X \right)$$

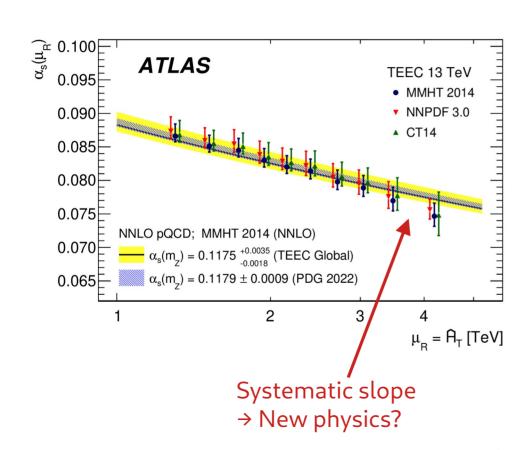
$$\beta_1 = \frac{1}{(4\pi)^2} \left[102 - \frac{38}{3} n_f - 20n_X T_X \left(1 + \frac{C_X}{5} \right) \right]$$



Update with TEEC@13 TeV

→ much improved bounds

... or 'new' SM dynamics



Possible SM explanations

- Residual PDF effects → high x,Q²?
- EW corrections?
- Maybe effect from LC approximation in two-loop ME?

$$\mathcal{R}^{(2)}(\mu_R^2) = 2 \operatorname{Re} \left[\mathcal{M}^{\dagger(0)} \mathcal{F}^{(2)} \right] (\mu_R^2) + \left| \mathcal{F}^{(1)} \right|^2 (\mu_R^2)$$
$$\equiv \mathcal{R}^{(2)}(s_{12}) + \sum_{i=1}^4 c_i \ln^i \left(\frac{\mu_R^2}{s_{12}} \right)$$
$$\mathcal{R}^{(2)}(s_{12}) \approx \mathcal{R}^{(2)l.c.}(s_{12})$$

- Experimental systematics?
- Resummation?

Either case interesting!

Photon isolation

Hard cone

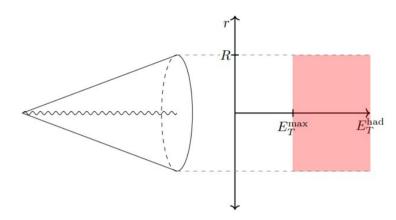
• Experimental hard cone:

$$E_{\perp}(r) \le E_{\perp \max} = 0.0042 \, E_{\perp}(\gamma) + 10 \, \text{GeV} \quad \text{for} \quad r \le R_{\max} = 0.4$$

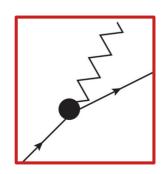
Theory perspective:

Not collinear safe in perturbative QCD due to $q \rightarrow q\gamma$ splittings

→ Non-vanishing fragmentation contribution (NNLO QCD with frag. [2201.06982][2205.01516])



Credit: Marius Hoefer (talk@SM@LHC22)



Photon isolation

Smooth cone

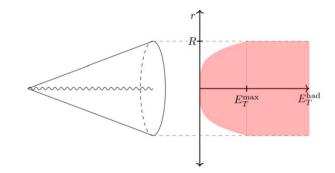
by Frixione [hep-ph/9801442]

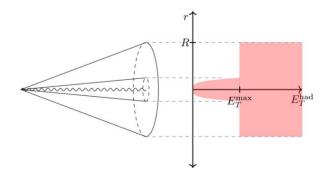
$$E_{\perp}(r) \le E_{\perp \max}(r) = 0.1 E_{\perp}(\gamma) \left(\frac{1 - \cos(r)}{1 - \cos(R_{\max})}\right)^2 \text{ for } r \le R_{\max} = 0.1$$

- → Theoretically convenient
- → Removes fragmentation contribution
- → Experimentally limited by detector resolution

Hybrid cone

- [1611.07226][2205.01516]
 - Combines smooth & hard cone
 - Fair approx. to hard cone [2205.01516]



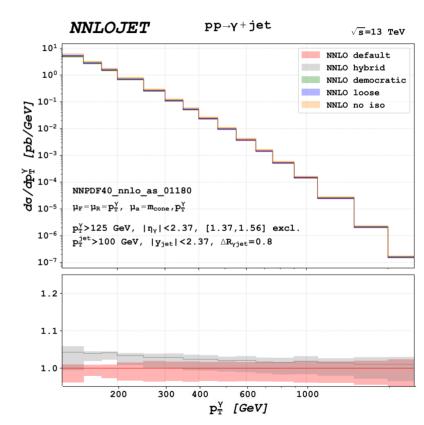


Credit: Marius Hoefer (talk@SM@LHC22)

Fragmentation contribution

- ATLAS photon requirements (same as for $pp \rightarrow \gamma + 2j$)
- Comparison between:
 - "default" NNLO with fragmentation
 - "hybrid" NNLO with hybrid isolation
- Fragmentation contr.
 - ~5% at small $E_T(\gamma)$
 - ~<1% at high $E_T(\gamma)$

[2205.01516]



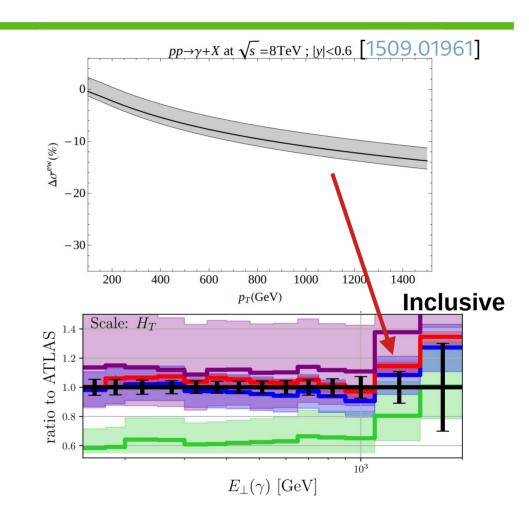
Missing effects

Electro-weak corrections

- EW Sudakov logs at high $E_{\perp}(\gamma)$
- ~O(-10%) above 1 TeV
- Further improvement of theory/data

Fragmentation

- More relevant at small $E_{\perp}(\gamma)$
- For $pp \to \gamma + X$: $\sigma(\text{hybrid}) > \sigma(\text{frag.})$
- Inclusion might cure slightly high normalisation



Missing effects

Electro-weak corrections

- EW Sudakov logs at high $E_{\perp}(\gamma)$
- ~O(-10%) above 1 TeV
- Further improvement of theory/data

Fragmentation

- More relevant at small $E_{\perp}(\gamma)$
- For $pp \to \gamma + X$: $\sigma(\text{hybrid}) > \sigma(\text{frag.})$
- Inclusion might cure slightly high normalisation

