Back-to-back DIS dijets at next-eikonal accuracy: from CGC to TMDs #### Guillaume Beuf National Centre for Nuclear Research (NCBJ), Warsaw with Tolga Altinoluk, Alina Czajka and Cyrille Marquet, (to appear). Polish Particle and Nuclear Theory Summit, IFJ PAN, Krakow, November 22-24, 2023 #### Context The new Electron Ion Collider (EIC) at Brookhaven is expected to start in the next decade. Among its main goals: - Study of the 3D momentum distribution of partons inside protons or nuclei, using the TMD factorization formalism for semi-inclusive processes - Study of the non-linear dynamics of partons with low momentum fraction inside protons or nuclei, using the CGC formalism for high energy (or low Bjorken x) processes. \Rightarrow What about the consistency and interplay between these two very different approaches to QCD? Here: Study this issue on the example of back-to-back dijet production in DIS at low Bjorken x, in which both TMD and CGC formalisms should be valid. ## TMD vs CGC approaches For a process with a hard ${\bf P}$ and a not so hard ${\bf k}$ transverse momenta: - TMD factorization: leading power (twist 2) in the limit $|{f k}| \ll |{f P}| \sim \sqrt{s}$ - ullet CGC result: leading power (eikonal) in the limit $|{f k}|\sim |{f P}|\ll \sqrt{s}$ Consistency of both approaches shown in the double limit $|\mathbf{k}| \ll |\mathbf{P}| \ll \sqrt{s}$ at leading power (Dominguez, Marquet, Xiao, Yuan, 2011) Power corrections in $|\mathbf{k}|/|\mathbf{P}|$ in the regime $|\mathbf{k}| \ll |\mathbf{P}| \ll \sqrt{s}$ studied from the CGC approach (Altinoluk, Boussarie, Kotko, 2019) \Rightarrow What about power corrections in \mathbf{P}^2/s or $|\mathbf{P}||\mathbf{k}|/s$ beyond the eikonal limit? ## Eikonal approximation in the CGC High-energy dense-dilute scattering in the CGC : Semiclassical and Eikonal approx. Dense target represented by a **strong semiclassical gluon field** $\mathcal{A}^{\mu}(x) \propto 1/g$ \Rightarrow Perturbative expansion in g needs improvement by all order resummation of $(g\,\mathcal{A}^{\mu}(x))^n$ Eikonal approx. : limit of **infinite boost** of $\mathcal{A}^{\mu}(x)$ along x^- : - $\mathcal{A}^{\mu}(x)$ independent on x^- (static limit) due to Lorentz time dilation \Rightarrow No p^+ transfer from the target - Lorentz contraction of $\mathcal{A}^{\mu}(x)$ (shockwave limit) \Rightarrow Partons from the projectile interact instantly in x^+ with the target, without transverse motion within the target - Under a boost of parameter γ_t along the "-" direction, \mathcal{A}^- is enhanced and \mathcal{A}^+ is suppressed: $\mathcal{A}^- = O(\gamma_t) \gg \mathcal{A}_\perp = O(1) \gg \mathcal{A}^+ = O(1/\gamma_t)$ Background field in the eikonal limit: $\mathcal{A}^{\mu}(x^+,x^-,\mathbf{x}) \approx \delta^{\mu-}\mathcal{A}^-(x^+,\mathbf{x}) \propto \delta(x^+)$ \Rightarrow Only $\left(g\mathcal{A}^-(x^+,\mathbf{x})\right)^n$ needs all orders resummation \Rightarrow Wilson line along x^+ #### Next-to-Eikonal corrections to the CGC Next-to-Eikonal (NEik) power corrections to the standard CGC formalism: - ullet Of order $1/\gamma_t$ at the level of the boosted background field - ullet Of order 1/s at the level of a cross section - ightarrow They arise from relaxing either of the 3 approximations: - ① x^- dependence of $\mathcal{A}^\mu(x)$ beyond infinite Lorentz dilation \to Treated as gradient expansion around a common x^- value: $\frac{\partial_- \mathcal{A}^-(x)}{A^-(x)} = O(1/\gamma_t)$ - \Rightarrow Possibility of (small) p^+ exchange with the target - 2 Target with finite width - \Rightarrow transverse motion of the projectile partons within the target - 3 Interactions with \mathcal{A}_{\perp} field taken into account, not only \mathcal{A}^{-} Note: Background quark field of the target also relevant at NEik. \Rightarrow Separate contribution not included in this talk. Propagator from y before the target to x after the target: $$\begin{split} S_F(x,y) &= \int \frac{dq^+ d^2\mathbf{q}}{(2\pi)^3} \int \frac{dk^+ d^2\mathbf{k}}{(2\pi)^3} \; \theta(q^+) \, \theta(k^+) \, e^{-ix \cdot \hat{q}} \; e^{iy \cdot \hat{k}} \; \underbrace{(\mathring{g} + m)}_{2q^+} \gamma^+ \\ &\times \int d^2\mathbf{z} \, e^{-i\mathbf{z} \cdot (\mathbf{q} - \mathbf{k})} \left\{ \int dz^- e^{iz^- (q^+ - k^+)} \; \mathcal{U}_F\left(+ \infty, -\infty; \mathbf{z}, z^- \right) \right. \\ &\left. - 2\pi \delta(q^+ - k^+) \, \frac{(\mathbf{q}^j + \mathbf{k}^j)}{2(q^+ + k^+)} \int dz^+ \left[\mathcal{U}_F\left(+ \infty, z^+; \mathbf{z}, 0 \right) \, \underbrace{\overrightarrow{\mathcal{D}_{\mathbf{z}^j}}}_{\mathbf{z}^j} \mathcal{U}_F\left(z^+, -\infty; \mathbf{z}, 0 \right) \right] \right. \\ &\left. - i \, \frac{2\pi \delta(q^+ - k^+)}{(q^+ + k^+)} \int dz^+ \left[\mathcal{U}_F\left(+ \infty, z^+; \mathbf{z}, 0 \right) \, \underbrace{\overrightarrow{\mathcal{D}_{\mathbf{z}^j}}}_{\mathbf{z}^j} \, \mathcal{U}_F\left(z^+, -\infty; \mathbf{z}, 0 \right) \right] \right. \\ &\left. + \frac{2\pi \delta(q^+ - k^+)}{(q^+ + k^+)} \, \underbrace{\left[\dot{\gamma}^i, \dot{\gamma}^j \right]}_{4} \int dz^+ \, \mathcal{U}_F\left(+ \infty, z^+; \mathbf{z}, 0 \right) \, gt \cdot \mathcal{F}_{ij}(z^+, \mathbf{z}, 0) \, \mathcal{U}_F\left(z^+, -\infty; \mathbf{z}, 0 \right) \right\} \frac{(\mathring{k} + m)}{2k^+} \\ &\left. + \text{NNEik} \right. \end{split}$$ Altinoluk, G.B, Czajka, Tymowska (2021); Altinoluk, G.B (2022) $$\mathcal{U}_F(x^+, y^+; \mathbf{z}, z^-) \equiv \mathbf{1} + \sum_{N=1}^{+\infty} \frac{1}{N!} \, \mathcal{P}_+ \left[-ig \int_{y^+}^{x^+} dz^+ \, t \cdot \mathcal{A}^-(z) \right]^N$$ Generalized Eikonal contribution: also includes the NEik non-static corrections: overall z⁻ dependence of the Wilson line. Propagator from \boldsymbol{y} before the target to \boldsymbol{x} after the target: $$\begin{split} S_F(x,y) &= \int \frac{dq^+ d^2\mathbf{q}}{(2\pi)^3} \int \frac{dk^+ d^2\mathbf{k}}{(2\pi)^3} \; \theta(q^+) \, \theta(k^+) \, e^{-ix \cdot \hat{q}} \; e^{iy \cdot \hat{k}} \; \underbrace{(\mathring{q}+m)}_{2q^+} \gamma^+ \\ &\times \int d^2\mathbf{z} \, e^{-i\mathbf{z} \cdot (\mathbf{q}^- \mathbf{k})} \left\{ \int dz^- e^{iz^- (q^+ - k^+)} \; \mathcal{U}_F\left(+ \infty, -\infty; \mathbf{z}, z^- \right) \right. \\ &\left. - 2\pi \delta(q^+ - k^+) \, \frac{(\mathbf{q}^j + \mathbf{k}^j)}{2(q^+ + k^+)} \int dz^+ \left[\mathcal{U}_F\left(+ \infty, z^+; \mathbf{z}, 0 \right) \, \underbrace{\mathcal{D}_{\mathbf{z}^j}}_{\mathbf{z}^j} \, \mathcal{U}_F\left(z^+, -\infty; \mathbf{z}, 0 \right) \right] \right. \\ &\left. - i \, \frac{2\pi \delta(q^+ - k^+)}{(q^+ + k^+)} \int dz^+ \left[\mathcal{U}_F\left(+ \infty, z^+; \mathbf{z}, 0 \right) \, \underbrace{\mathcal{D}_{\mathbf{z}^j}}_{\mathbf{z}^j} \, \underbrace{\mathcal{U}_F\left(z^+, -\infty; \mathbf{z}, 0 \right) } \right] \right. \\ &\left. + \frac{2\pi \delta(q^+ - k^+)}{(q^+ + k^+)} \, \underbrace{\left[\dot{\gamma}^i, \dot{\gamma}^j \right]}_{4} \int dz^+ \, \mathcal{U}_F\left(+ \infty, z^+; \mathbf{z}, 0 \right) \, gt \cdot \mathcal{F}_{ij}(z^+, \mathbf{z}, 0) \, \mathcal{U}_F\left(z^+, -\infty; \mathbf{z}, 0 \right) \right\} \right. \\ &\left. + \text{NNEik} \right. \end{split}$$ Altinoluk, G.B, Czajka, Tymowska (2021); Altinoluk, G.B (2022) $$\mathcal{U}_F(x^+, y^+; \mathbf{z}, z^-) \equiv \mathbf{1} + \sum_{N=1}^{+\infty} \frac{1}{N!} \, \mathcal{P}_+ \left[-ig \int_{y^+}^{x^+} dz^+ \, t \cdot \mathcal{A}^-(z) \right]^N$$ • NEik contributions beyond the shockwave approx or due to \mathcal{A}_{\perp} . Last term: quark helicity coupling with longitudinal chromoelectric field of the target \mathcal{F}_{ij} . Compact notations for the decorated Wilson lines: $$\begin{split} &\mathcal{U}_{F;j}^{(1)}(\mathbf{z}) = \int dz^{+}\,\mathcal{U}_{F}\Big(+\infty,z^{+};\mathbf{z}\Big) \overrightarrow{\mathcal{D}_{\mathbf{z}^{j}}} \mathcal{U}_{F}\Big(z^{+},-\infty;\mathbf{z}\Big) \\ &\mathcal{U}_{F}^{(2)}(\mathbf{z}) = \int dz^{+}\,\mathcal{U}_{F}\Big(+\infty,z^{+};\mathbf{z}\Big) \overrightarrow{\mathcal{D}_{\mathbf{z}^{j}}} \,\overrightarrow{\mathcal{D}_{\mathbf{z}^{j}}} \mathcal{U}_{F}\Big(z^{+},-\infty;\mathbf{z}\Big) \\ &\mathcal{U}_{F;ij}^{(3)}(\mathbf{z}) = \int dz^{+}\,\mathcal{U}_{F}\Big(+\infty,z^{+};\mathbf{z}\Big) gt \cdot \mathcal{F}_{ij}(z^{+},\mathbf{z}) \mathcal{U}_{F}\Big(z^{+},-\infty;\mathbf{z}\Big) \end{split}$$ Propagator from y before the target to x after the target: $$\begin{split} S_F(x,y) \; &= \; \int \frac{dq^+ d^2\mathbf{q}}{(2\pi)^3} \int \frac{dk^+ d^2\mathbf{k}}{(2\pi)^3} \; \theta(q^+) \, \theta(k^+) \, e^{-ix \cdot \bar{q}} \; e^{iy \cdot \bar{k}} \; \frac{(\check{\mathbf{g}} + m)}{2q^+} \gamma^+ \int d^2\mathbf{z} \, e^{-i\mathbf{z} \cdot (\mathbf{q} - \mathbf{k})} \\ & \times \left\{ \int dz^- e^{iz^- (q^+ - k^+)} \; \mathcal{U}_F \Big(\mathbf{z}, z^-\Big) + 2\pi \delta(q^+ - k^+) \; \Big[- \frac{(\mathbf{q}^j + \mathbf{k}^j)}{2(q^+ + k^+)} \, \mathcal{U}_{F;j}^{(1)}(\mathbf{z}) \right. \\ & \left. - \frac{i}{(q^+ + k^+)} \, \mathcal{U}_F^{(2)}(\mathbf{z}) + \frac{[\gamma^i, \gamma^j]}{4(q^+ + k^+)} \, \mathcal{U}_{F;ij}^{(3)}(\mathbf{z}) \Big] \right\} \frac{(\check{k} + m)}{2k^+} + \text{NNEik} \end{split}$$ Compact notations for the decorated Wilson lines: $$\begin{split} &\mathcal{U}_{F;j}^{(1)}(\mathbf{z}) = \int dz^{+}\,\mathcal{U}_{F}\Big(+\infty,z^{+};\mathbf{z}\Big) \overrightarrow{\mathcal{D}_{\mathbf{z}^{j}}} \mathcal{U}_{F}\Big(z^{+},-\infty;\mathbf{z}\Big) \\ &\mathcal{U}_{F}^{(2)}(\mathbf{z}) = \int dz^{+}\,\mathcal{U}_{F}\Big(+\infty,z^{+};\mathbf{z}\Big) \overleftarrow{\mathcal{D}_{\mathbf{z}^{j}}} \,\overrightarrow{\mathcal{D}_{\mathbf{z}^{j}}} \mathcal{U}_{F}\Big(z^{+},-\infty;\mathbf{z}\Big) \\ &\mathcal{U}_{F;ij}^{(3)}(\mathbf{z}) = \int dz^{+}\,\mathcal{U}_{F}\Big(+\infty,z^{+};\mathbf{z}\Big) gt \cdot \mathcal{F}_{ij}(z^{+},\mathbf{z}) \mathcal{U}_{F}\Big(z^{+},-\infty;\mathbf{z}\Big) \end{split}$$ Alternative expressions for the decorated Wilson lines: $$\begin{split} \mathcal{U}_{F;j}^{(1)}(\mathbf{z}) &= -2\int dz^{+} \, \boldsymbol{z}^{+} \, \mathcal{U}_{F}(+\infty,z^{+};\mathbf{z})[-igt \cdot \boldsymbol{\mathcal{F}}_{j}^{-}(z^{+},\mathbf{z})] \mathcal{U}_{F}(z'^{+},-\infty;\mathbf{z}) \\ \mathcal{U}_{F}^{(2)}(\mathbf{z}) &= \int dz^{+} \int dz'^{+} \, (\boldsymbol{z}^{+} - \boldsymbol{z}'^{+}) \, \theta(z^{+} - z'^{+}) \mathcal{U}_{F}(+\infty,z^{+},\mathbf{z})[-igt \cdot \boldsymbol{\mathcal{F}}_{j}^{-}(z^{+},\mathbf{z})] \\ &\times \, \mathcal{U}_{F}(z^{+},z'^{+};\mathbf{z})[-igt \cdot \boldsymbol{\mathcal{F}}_{j}^{-}(z'^{+},\mathbf{z})] \mathcal{U}_{F}(z'^{+},-\infty;\mathbf{z}) \end{split}$$ Thanks to the relation: DIS dijet cross calculated at NEik accuracy, at LO in α_s in the CGC. (Altinoluk, G.B., Czajka, Tymowska, (2023)) - · Only longitudinal photon contribution will be discussed for simplicity - Second diagram vanishes in γ_L^* case, but matters in γ_T^* case. $$\text{S-matrix at NEik accuracy: } S_{q_1\bar{q}_2\leftarrow\gamma_L^*} = S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{Gen. Eik}} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dyn. target}} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dec. on }q} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dec. on }\bar{q}}$$ $$\begin{split} S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{Gen. Eik}} &= -2Q\,\frac{ee_f}{2\pi}\,\bar{u}(1)\gamma^+v(2)\,\frac{(q^+\!+\!k_1^+\!-\!k_2^+)(q^+\!+\!k_2^+\!-\!k_1^+)}{4(q^+)^2}\,\int_{\mathbf{v},\mathbf{w}}\,e^{-i\mathbf{v}\cdot\mathbf{k}_1}\,e^{-i\mathbf{w}\cdot\mathbf{k}_2}\\ &\times\,\mathrm{K}_0\left(\hat{Q}\,|\mathbf{v}\!-\!\mathbf{w}|\right)\int db^-\,e^{ib^-(k_1^+\!+\!k_2^+\!-\!q^+)}\,\left[\mathcal{U}_F\!\left(\mathbf{v},b^-\right)\!\mathcal{U}_F^\dagger\!\left(\mathbf{w},b^-\right)-1\right]\\ \\ &\hat{Q}^2 &= m^2+\frac{(q^+\!+\!k_1^+\!-\!k_2^+)(q^+\!-\!k_1^+\!+\!k_2^+)}{4(q^+)^2}\,Q^2\,. \end{split}$$ DIS dijet cross calculated at NEik accuracy, at LO in α_s in the CGC. (Altinoluk, G.B., Czajka, Tymowska, (2023)) - Only longitudinal photon contribution will be discussed for simplicity - Second diagram vanishes in γ_L^* case, but matters in γ_T^* case. $\text{S-matrix at NEik accuracy:} \ S_{q_1\bar{q}_2\leftarrow\gamma_L^*} = S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{Gen. Eik}} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dyn. target}} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dec. on }q} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dec. on }\bar{q}}$ $$\begin{split} S_{q_{1}\bar{q}_{2}\leftarrow\gamma_{L}^{*}}^{\mathrm{dyn.\ target}} &= 2\pi\delta(k_{1}^{+} + k_{2}^{+} - q^{+})\ iQ\ \frac{ee_{f}}{2\pi}\ \bar{u}(1)\gamma^{+}v(2)\ \frac{(k_{1}^{+} - k_{2}^{+})}{(q^{+})^{2}}\ \int d^{2}\mathbf{v}\ e^{-i\mathbf{v}\cdot\mathbf{k}_{1}}\ \int d^{2}\mathbf{w}\ e^{-i\mathbf{w}\cdot\mathbf{k}_{2}} \\ &\times\ \left[\mathrm{K}_{0}\left(\bar{Q}\left|\mathbf{v}-\mathbf{w}\right|\right) - \frac{\left(\bar{Q}^{2} - m^{2}\right)}{2\bar{Q}}\left|\mathbf{v}-\mathbf{w}\right|\mathrm{K}_{1}\left(\bar{Q}\left|\mathbf{v}-\mathbf{w}\right|\right)\right]\left[\mathcal{U}_{F}\left(\mathbf{v},b^{-}\right)\overleftarrow{\partial_{b^{-}}}\mathcal{U}_{F}^{\dagger}\left(\mathbf{w},b^{-}\right)\right]\right|_{b^{-}=0} \end{split}$$ $$\bar{Q}^2 = m^2 + Q^2 \frac{k_1^+ k_2^+}{(q^+)^2}$$ DIS dijet cross calculated at NEik accuracy, at LO in α_s in the CGC. (Altinoluk, G.B., Czajka, Tymowska, (2023)) - Only longitudinal photon contribution will be discussed for simplicity - Second diagram vanishes in γ_L^* case, but matters in γ_T^* case. $\text{S-matrix at NEik accuracy: } S_{q_1\bar{q}_2\leftarrow\gamma_L^*} = S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{Gen. Eik}} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dyn. target}} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dec. on }q} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dec. on }\bar{q}}$ $$\begin{split} S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dec. on }q} &= 2\pi\delta(k_1^+ + k_2^+ - q^+) \; \frac{ee_f}{2\pi} \left(-1 \right) Q \, \frac{k_2^+}{(q^+)^2} \int d^2\mathbf{v} \, e^{-i\mathbf{v}\cdot\mathbf{k}_1} \int d^2\mathbf{w} \, e^{-i\mathbf{w}\cdot\mathbf{k}_2} \, \mathbf{K}_0 \left(\bar{Q} \, |\mathbf{v} - \mathbf{w}| \right) \\ &\times \; \bar{u}(1)\gamma^+ \left[\frac{[\gamma^i,\gamma^j]}{4} \, \mathcal{U}_{F;ij}^{(3)}(\mathbf{v}) - i \, \mathcal{U}_F^{(2)}(\mathbf{v}) \, + \mathcal{U}_{F;j}^{(1)}(\mathbf{v}) \left(\frac{(\mathbf{k}_2^j - \mathbf{k}_1^j)}{2} + \frac{i}{2} \, \partial_{\mathbf{w}^j} \right) \right] \mathcal{U}_F^\dagger(\mathbf{w}) \, v(2) \end{split}$$ DIS dijet cross calculated at NEik accuracy, at LO in α_s in the CGC. (Altinoluk, G.B., Czajka, Tymowska, (2023)) - Only longitudinal photon contribution will be discussed for simplicity - Second diagram vanishes in γ_L^* case, but matters in γ_T^* case. $\text{S-matrix at NEik accuracy: } S_{q_1\bar{q}_2\leftarrow\gamma_L^*} = S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{Gen. Eik}} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dyn. target}} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dec. on }q} + S_{q_1\bar{q}_2\leftarrow\gamma_L^*}^{\text{dec. on }\bar{q}}$ $$S_{q_{1}\bar{q}_{2}\leftarrow\gamma_{L}^{*}}^{\text{dec. on }\bar{q}} = 2\pi\delta(k_{1}^{+} + k_{2}^{+} - q^{+}) \frac{ee_{f}}{2\pi} (-1)Q \frac{k_{1}^{+}}{(q^{+})^{2}} \int d^{2}\mathbf{v} e^{-i\mathbf{v}\cdot\mathbf{k}_{1}} \int d^{2}\mathbf{w} e^{-i\mathbf{w}\cdot\mathbf{k}_{2}} K_{0} \left(\bar{Q} |\mathbf{v} - \mathbf{w}|\right) \times \bar{u}(1)\gamma^{+} \left[\mathcal{U}_{F}(\mathbf{v}) \left(\frac{[\gamma^{i}, \gamma^{j}]}{4} \mathcal{U}_{F;ij}^{(3)\dagger}(\mathbf{w}) - i\mathcal{U}_{F}^{(2)\dagger}(\mathbf{w}) + \left(\frac{i}{2} \overleftarrow{\partial_{\mathbf{v}^{j}}} - \frac{(\mathbf{k}_{2}^{j} - \mathbf{k}_{1}^{j})}{2}\right) \mathcal{U}_{F;j}^{(1)\dagger}(\mathbf{w})\right)\right] v(2)$$ 9 / 19 ## Change of variables and back-to-back limit Back-to-back limit of dijets are conveniently expressed in terms of: (dijet momentum imbalance) $$\mathbf{k}=\mathbf{k}_1+\mathbf{k}_2$$ and (relative momentum) $\mathbf{P}=(z_2\mathbf{k}_1-z_1\mathbf{k}_2)$ $$z_1 = k_1^+/(k_1^+ + k_2^+)$$ and $z_2 = k_2^+/(k_1^+ + k_2^+) = 1 - z_1$ such that $$\mathbf{k}_1 = \mathbf{P} + z_1 \mathbf{k}$$ $$\mathbf{k}_2 = -\mathbf{P} + z_2 \mathbf{k}$$ back-to-back correlation limit: $|\mathbf{k}| \ll |\mathbf{P}|$ In coordinate space: (conjugate to k) $$\mathbf{b} = (z_1\mathbf{v} + z_2\mathbf{w})$$ and (conjugate to P) $\mathbf{r} = \mathbf{v} - \mathbf{w}$ such that $$\mathbf{v} = \mathbf{b} + z_2 \, \mathbf{r}$$ back-to-back correlation limit: $|\mathbf{r}| \ll |\mathbf{b}|$ ## Small r expansion for the eikonal contribution (1) Open dipole from the Generalized Eikonal term for $\mathbf{r} = \mathbf{v} - \mathbf{w} \to 0$: $$\begin{split} & \int_{\mathbf{b}} e^{-i\mathbf{b}\cdot\mathbf{k}} \left[\mathcal{U}_{F} \Big(\mathbf{b} + z_{2} \, \mathbf{r}, b^{-} \Big) \mathcal{U}_{F}^{\dagger} \Big(\mathbf{b} - z_{1} \, \mathbf{r}, b^{-} \Big) - 1 \right] \\ &= \int_{\mathbf{b}} e^{-i\mathbf{b}\cdot\mathbf{k}} \left[z_{2} \mathbf{r}^{j} \Big(\partial_{j} \mathcal{U}_{F} (\mathbf{b}, b^{-}) \Big) \mathcal{U}_{F}^{\dagger} (\mathbf{b}, b^{-}) - z_{1} \mathbf{r}^{j} \mathcal{U}_{F} (\mathbf{b}, b^{-}) \Big(\partial_{j} \mathcal{U}_{F}^{\dagger} (\mathbf{b}, b^{-}) \Big) + O(\mathbf{r}^{2}) \right] \\ &= \mathbf{r}^{j} \, t^{a} \int_{\mathbf{b}} e^{-i\mathbf{b}\cdot\mathbf{k}} \int_{z^{+}} \mathcal{U}_{A} \Big(+ \infty, z^{+}; \mathbf{b}, b^{-} \Big)_{ab} \left(-ig \right) \mathcal{F}_{j}^{b} - (z^{+}, \mathbf{b}, b^{-}) + O(\mathbf{r}^{2}) \end{split}$$ Note: 0th order in the ${\bf r}$ expansion trivial \to first order in ${\bf r}$ is the leading power ## Small r expansion for the eikonal contribution (1) Open dipole from the Generalized Eikonal term for $\mathbf{r} = \mathbf{v} - \mathbf{w} \to 0$: $$\begin{split} & \int_{\mathbf{b}} e^{-i\mathbf{b}\cdot\mathbf{k}} \left[\mathcal{U}_{F} \Big(\mathbf{b} + z_{2} \, \mathbf{r}, b^{-} \Big) \mathcal{U}_{F}^{\dagger} \Big(\mathbf{b} - z_{1} \, \mathbf{r}, b^{-} \Big) - 1 \right] \\ &= \int_{\mathbf{b}} e^{-i\mathbf{b}\cdot\mathbf{k}} \left[z_{2} \mathbf{r}^{j} \Big(\partial_{j} \mathcal{U}_{F} (\mathbf{b}, b^{-}) \Big) \mathcal{U}_{F}^{\dagger} (\mathbf{b}, b^{-}) - z_{1} \mathbf{r}^{j} \mathcal{U}_{F} (\mathbf{b}, b^{-}) \Big(\partial_{j} \mathcal{U}_{F}^{\dagger} (\mathbf{b}, b^{-}) \Big) + O(\mathbf{r}^{2}) \right] \\ &= \mathbf{r}^{j} \, t^{a} \int_{\mathbf{b}} e^{-i\mathbf{b}\cdot\mathbf{k}} \int_{z^{+}} \mathcal{U}_{A} \Big(+ \infty, z^{+}; \mathbf{b}, b^{-} \Big)_{ab} \left(-ig \right) \mathcal{F}_{j}^{b} - (z^{+}, \mathbf{b}, b^{-}) + O(\mathbf{r}^{2}) \end{split}$$ Note: 0th order in the ${\bf r}$ expansion trivial \to first order in ${\bf r}$ is the leading power However: the aim is to study the interplay between subleading power corrections \Rightarrow Terms of order ${\bf r}^2$ needed as well! # Small r expansion for the eikonal contribution (2) Open dipole from the Generalized Eikonal term for ${\bf r}={\bf v}-{\bf w}\to 0$: $$\begin{split} &\int_{\mathbf{b}} e^{-i\mathbf{b}\cdot\mathbf{k}} \left[\mathcal{U}_{F} \Big(\mathbf{b} + z_{2} \, \mathbf{r}, b^{-} \Big) \mathcal{U}_{F}^{\dagger} \Big(\mathbf{b} - z_{1} \, \mathbf{r}, b^{-} \Big) - 1 \right] \\ &= \int_{\mathbf{b}} e^{-i\mathbf{b}\cdot\mathbf{k}} \left[-i \Big(1 + \frac{i(z_{2} - z_{1})}{2} \mathbf{r} \cdot \mathbf{k} \Big) \mathbf{r}^{j} \, t^{a'} \int dv^{+} \, \mathcal{U}_{A} \, \big(+\infty, v^{+}; \mathbf{b}, b^{-} \big)_{a'a} \, g \mathcal{F}_{j}^{}_{a} (v^{+}, \mathbf{b}, b^{-}) \right. \\ &\qquad \qquad \left. - \frac{1}{2} \mathbf{r}^{i} \mathbf{r}^{j} \, t^{a'} t^{b'} \int dv^{+} \int dw^{+} \, \mathcal{U}_{A} \, \big(+\infty, v^{+}; \mathbf{b}, b^{-} \big)_{a'a} \, g \mathcal{F}_{i-a}^{a} (v^{+}, \mathbf{b}, b^{-}) \right. \\ &\qquad \qquad \times \mathcal{U}_{A} \, \big(+\infty, w^{+}; \mathbf{b}, b^{-} \big)_{b'b} \, g \mathcal{F}_{j-b}^{b} (w^{+}, \mathbf{b}, b^{-}) \, + O \, \big(|\mathbf{r}|^{3} \big) \, \Big] \end{split}$$ \Rightarrow Order $|{f r}|^2$ correction: contributions with either one or two field strength ${\cal F}_{\perp}^-$ #### Small r limit for the non-static NEik correction For the open decorated dipole due to the dynamics of the target: $$\begin{split} & \left[\mathcal{U}_{F} \left(\mathbf{b} + z_{2} \, \mathbf{r}, b^{-} \right) \overleftrightarrow{\partial_{b}^{-}} \mathcal{U}_{F}^{\dagger} \left(\mathbf{b} - z_{1} \, \mathbf{r}, b^{-} \right) \right] \Big|_{b^{-} = 0} \\ &= \int_{z^{+}} \left\{ \mathcal{U}_{F} (\mathbf{b}) \mathcal{U}_{F}^{\dagger} \left(z^{+}, -\infty; \mathbf{b} \right) i g t \cdot \mathcal{F}^{+-} (z^{+}, \mathbf{b}) \mathcal{U}_{F}^{\dagger} \left(+\infty, z^{+}; \mathbf{b} \right) \\ & - \mathcal{U}_{F} \left(+\infty, z^{+}; \mathbf{b} \right) (-i g) t \cdot \mathcal{F}^{+-} (z^{+}, \mathbf{b}) \mathcal{U}_{F} \left(z^{+}, -\infty; \mathbf{b} \right) \mathcal{U}_{F}^{\dagger} (\mathbf{b}) + O(|\mathbf{r}|) \right\} \\ &= 2i t^{a'} \int_{z^{+}} \mathcal{U}_{A} \left(+\infty, z^{+}; \mathbf{b} \right)_{a'a} g \mathcal{F}_{a}^{+-} (z^{+}, \mathbf{b}) + O(|\mathbf{r}|) \end{split}$$ Involves the longitudinal chromoelectric field \mathcal{F}^{+-} instead of the transverse field \mathcal{F}_j^{-} Note: Similar result for the NEik corrections with $\mathcal{U}_{F;ij}^{(3)}$, but with \mathcal{F}_{ij} instead of \mathcal{F}_{Ξ}^{+-} # Small ${f r}$ limit for the NEik corrections in $\mathcal{U}_{F:i}^{(1)}$ and $\mathcal{U}_{F}^{(2)}$ Terms with $\mathcal{U}_{F;j}^{(1)}$ and $\mathcal{U}_{F}^{(2)}$ decorating the quark line (remembering that $|\mathbf{r}| \sim 1/|\mathbf{P}|$): $$\int_{\mathbf{b}} e^{-i\mathbf{b}\cdot\mathbf{k}} \left[-\left(\mathbf{P}^{j} + \frac{(z_{1} - z_{2})}{2}\mathbf{k}^{j}\right) \mathcal{U}_{F;j}^{(1)}(\mathbf{b} + z_{2}\mathbf{r}) \,\mathcal{U}_{F}^{\dagger}(\mathbf{b} - z_{1}\mathbf{r}) \right. \\ + \frac{i}{2} \,\mathcal{U}_{F;j}^{(1)}(\mathbf{b} + z_{2}\mathbf{r}) \,\partial_{j} \mathcal{U}_{F}^{\dagger}(\mathbf{b} - z_{1}\mathbf{r}) - i \,\mathcal{U}_{F}^{(2)}(\mathbf{b} + z_{2}\mathbf{r}) \,\mathcal{U}_{F}^{\dagger}(\mathbf{b} - z_{1}\mathbf{r}) \right] \\ = \int_{\mathbf{b}} e^{-i\mathbf{b}\cdot\mathbf{k}} \left\{ \left[-\mathbf{P}^{j} + \frac{(z_{2} - z_{1})}{2}\mathbf{k}^{j} - iz_{2}\mathbf{P}^{j}(\mathbf{r}\cdot\mathbf{k}) \right] \mathcal{U}_{F;j}^{(1)}(\mathbf{b}) \,\mathcal{U}_{F}^{\dagger}(\mathbf{b}) \\ + \left[\frac{i}{2} \,\delta^{ij} + \mathbf{P}^{j}\mathbf{r}^{i} \right] \mathcal{U}_{F;j}^{(1)}(\mathbf{b}) \,\partial_{i} \mathcal{U}_{F}^{\dagger}(\mathbf{b}) - i \,\mathcal{U}_{F}^{(2)}(\mathbf{b}) \,\mathcal{U}_{F}^{\dagger}(\mathbf{b}) + O(|\mathbf{r}|) \right\}$$ $$\mathcal{U}_{F;j}^{(1)}(\mathbf{b})\mathcal{U}_{F}^{\dagger}\Big(\mathbf{b}\Big) \, = \, 2it^{a'} \int_{z^{+}} \frac{z^{+}}{z^{+}} \, \mathcal{U}_{A}\Big(+ \infty, z^{+}; \mathbf{b}\Big)_{a'a} \, g \mathcal{F}_{j}^{a \, -}(z^{+}, \mathbf{b})$$ # Small ${f r}$ limit for the NEik corrections in $\mathcal{U}_{F;j}^{(1)}$ and $\mathcal{U}_{F}^{(2)}$ $$\mathcal{U}_{F}^{(2)}(\mathbf{b})\mathcal{U}_{F}^{\dagger}(\mathbf{b}) = -t^{a'}t^{b'}\int_{z^{+},z'^{+}} \frac{(z^{+}-z'^{+})\theta(z^{+}-z'^{+})\mathcal{U}_{A}(+\infty,z^{+};\mathbf{b})_{a'a}g\mathcal{F}_{j}^{a^{-}}(z^{+},\mathbf{b})}{\times \mathcal{U}_{A}(+\infty,z'^{+};\mathbf{b})_{b'b}g\mathcal{F}_{j}^{b^{-}}(z'^{+},\mathbf{b})}$$ $$\mathcal{U}_{F;j}^{(1)}(\mathbf{b}) \, \partial_i \mathcal{U}_F^{\dagger}(\mathbf{b}) = -2t^{a'}t^{b'} \int dz^+ \int dz'^+ \, \mathbf{z}^+ \, \mathcal{U}_A(+\infty, z^+; \mathbf{b})_{a'a} \, g \mathcal{F}_j^{a-}(z^+, \mathbf{b})$$ $$\times \, \mathcal{U}_A(+\infty, z'^+; \mathbf{b})_{b'b} \, g \mathcal{F}_i^{b-}(z'^+, \mathbf{b})$$ Like in the GEik term: contributions with either 1 or 2 \mathcal{F}_{\perp}^- , but now with an extra factor z^+ or $(z^+-z'^+)$: NEik suppression with the target width. Similar results for decorations on the antiquark line instead. ## Back-to-back cross section: (Generalized) Eikonal piece Squaring the single \mathcal{F}_{\perp}^{-} part of the Generalized Eikonal contribution in the back-to-back limit: $$\begin{split} \frac{d\sigma_{\gamma_{L}^{+} \to q_{1} \hat{q}_{2}}}{d \mathbf{P.S.}} \Bigg|_{\mathbf{Gen.Eik}}^{\mathcal{F}_{\perp}^{-} \mathcal{F}_{\perp}^{-}} &= g^{2} (ee_{f})^{2} Q^{2} (q^{+} + k_{1}^{+} - k_{2}^{+})^{2} (q^{+} - k_{1}^{+} + k_{2}^{+})^{2} \frac{k_{1}^{+} k_{2}^{+}}{4 (q^{+})^{6}} \bigg[\frac{4 \mathbf{P}^{i} \mathbf{P}^{j}}{(\mathbf{P}^{2} + \hat{Q}^{2})^{4}} - 2 (z_{2} - z_{1}) \frac{(\mathbf{P}^{i} \mathbf{k}^{j} + \mathbf{k}^{i} \mathbf{P}^{j})}{[\mathbf{P}^{2} + \hat{Q}^{2}]^{4}} \\ &\quad + 16 (z_{2} - z_{1}) \frac{(\mathbf{k} \cdot \mathbf{P}) \mathbf{P}^{i} \mathbf{P}^{j}}{[\mathbf{P}^{2} + \hat{Q}^{2}]^{5}} + O\left(\frac{\mathbf{k}^{2}}{\mathbf{P}^{8}}\right) \bigg] (2q^{+}) \int d(\Delta b^{-}) e^{i\Delta b^{-}} (k_{1}^{+} + k_{2}^{+} - q^{+}) \int_{\mathbf{b}, \mathbf{b}'} e^{-i\mathbf{k} \cdot (\mathbf{b} - \mathbf{b}')} \int_{z^{+}, z'^{+}} \\ &\quad \times \left\langle \mathcal{F}_{i}^{a} - \left(z'^{+}, \mathbf{b}', -\frac{\Delta b^{-}}{2}\right) \bigg[\mathcal{U}_{A}^{\dagger} \Big(+ \infty, z'^{+}; \mathbf{b}', -\frac{\Delta b^{-}}{2} \Big) \mathcal{U}_{A} \Big(+ \infty, z^{+}; \mathbf{b}, \frac{\Delta b^{-}}{2} \Big) \bigg]_{ab} \mathcal{F}_{j}^{b} - \Big(z^{+}, \mathbf{b}, \frac{\Delta b^{-}}{2} \Big) \right\rangle \end{split}$$ Strict Eikonal result found by neglecting Δb^- in the fields: $$\begin{split} &\frac{d\sigma_{\gamma_{-}^{\star}\rightarrow q_1\bar{q}_2}}{d\mathbf{P}.\mathbf{S}.}\Big|_{\text{Strict,Eiik}}^{\mathcal{F}_{-}^{-}\mathcal{F}_{-}^{-}} &= (2q^+)2\pi\delta(k_1^+ + k_2^+ - q^+)(ee_f)^2g^24z_1^3z_2^3Q^2 \\ &\times \left[\frac{4\mathbf{P}^i\mathbf{P}^j}{(\mathbf{P}^2 + \bar{Q}^2)^4} - 2(z_2 - z_1)\frac{(\mathbf{P}^i\mathbf{k}^j + \mathbf{k}^i\mathbf{P}^j)}{[\mathbf{P}^2 + \bar{Q}^2]^4} + 16(z_2 - z_1)\frac{(\mathbf{k} \cdot \mathbf{P})\mathbf{P}^i\mathbf{P}^j}{[\mathbf{P}^2 + \bar{Q}^2]^5} + O\left(\frac{\mathbf{k}^2}{\mathbf{P}^8}\right)\right] \\ &\times \int_{\mathbf{b},\mathbf{b}'} e^{-i\mathbf{k}\cdot(\mathbf{b}-\mathbf{b}')} \int_{z^+,z'^+} \left\langle \mathcal{F}_i^a - (z'^+,\mathbf{b}')\left[\mathcal{U}_A^{\dagger}(+\infty,z'^+;\mathbf{b}')\mathcal{U}_A(+\infty,z^+;\mathbf{b})\right]_{ab} \mathcal{F}_j^b - (z^+,\mathbf{b})\right\rangle \end{split}$$ - ullet Twist-2 gluon TMDs in the target (both unpolarized and linearly polarized), with momentum fraction x=0 and transverse momentum ${f k}$, with a future staple gauge link. - ullet Kinematical twist 3 corrections, suppressed by an extra $|{f k}|/|{f P}|$ in the back-to-back dijet limit $|{f k}| \ll |{f P}|$ - ullet Not shown here: **Genuine twist 3 corrections**, involving a correlator of the type $\langle \mathcal{F}_{\perp}^- \mathcal{F}_{\perp}^- \mathcal{F}_{\perp}^- \rangle$ - Difference between Gen. Eik and strict Eik. : involves correlator $\langle \mathcal{F}_{\perp}^{-}\mathcal{F}_{\perp}^{-}\mathcal{F}^{+-} \rangle \Rightarrow$ twist 4 and NEik correction! 2PINTS, IET PAN, Nov. 22-24 #### Back-to-back cross section: twist 3 TMDs from NEik From the interference between the non-static NEik correction and the strict Eikonal amplitudes: $$\frac{d\sigma_{\gamma_L^* \to q_1\bar{q}_2}}{d\mathrm{P.S.}} \Bigg|_{NEik}^{\mathcal{F}_\perp - \mathcal{F}^{+-}} = (2q^+)2\pi\delta(k_1^+ + k_2^+ - q^+)8Q^2e^2e_f^2g^2\frac{z_1^2z_2^2(z_2 - z_1)}{q^+}\frac{\mathbf{P}^i(\mathbf{P}^2 + m^2)}{(\mathbf{P}^2 + \bar{Q}^2)^4} \\ \times 2\mathrm{Re}\int_{\mathbf{b},\mathbf{b}'} e^{-i\mathbf{k}\cdot(\mathbf{b}-\mathbf{b}')}\int_{z^+,z'^+} \left\langle \mathcal{F}_i^a - (z'^+,\mathbf{b}')\left[\mathcal{U}_A^\dagger(\infty,z'^+;\mathbf{b}')\mathcal{U}_A(\infty,z^+;\mathbf{b})\right]_{ab}\mathcal{F}_b^{+-}(\mathbf{z}^+,\mathbf{b})\right\rangle$$ \Rightarrow NEik. correction stemming from the dynamics of the target is a **twist-3 gluon TMD**, (Mulders, Rodrigues (2001)) with momentum fraction x = 0. From the interference between the NEik correction with $\mathcal{U}_{F;ij}^{(3)}$ and the strict Eikonal amplitude: - Vanishing result in the γ_L^* case due to Dirac algebra. - An extra contribution to the cross section in the γ_T^* case: $$\frac{d\sigma_{\gamma_T^* \to q_1\bar{q}_2}}{d\text{P.S.}} \bigg|_{NEik}^{\mathcal{F}_\perp\mathcal{F}_{ij}} \propto 2\text{Re} \int_{\mathbf{b},\mathbf{b}'} e^{-i\mathbf{k}\cdot(\mathbf{b}-\mathbf{b}')} \int_{z^+,z'^+} \left\langle \mathcal{F}_l^a - (z'^+,\mathbf{b}') \left[\mathcal{U}_A^\dagger(\infty,z'^+;\mathbf{b}') \mathcal{U}_A(\infty,z^+;\mathbf{b}) \right]_{ab} \mathcal{F}_{ij}^b(z^+,\mathbf{b}) \right\rangle$$ \Rightarrow The other **twist-3 gluon TMD** as found in Mulders, Rodrigues (2001), with momentum fraction x = 0. ## Back-to-back cross section: x dependence from NEik Including all contributions of the form $\langle \mathcal{F}_{\perp}^{-}\mathcal{F}_{\perp}^{-} \rangle$, of order Eik or NEik, and twist 2 or twist 3: $$\begin{split} & \frac{d\sigma_{\gamma_{L}^{+} \rightarrow q_{1}\bar{q}_{2}}}{dP.S.} \bigg|^{F_{L}^{+}F_{L}^{-}} &= (2q^{+})2\pi\delta(k_{1}^{+} + k_{2}^{+} - q^{+})(ee_{f})^{2}g^{2}4z_{1}^{3}z_{2}^{3}Q^{2} \\ & \times \left[\frac{4\mathbf{P}^{!}\mathbf{P}^{j}}{(\mathbf{P}^{2} + Q^{2})^{4}} - 2(z_{2} - z_{1})\frac{(\mathbf{P}^{i}\mathbf{k}^{j} + \mathbf{k}^{!}\mathbf{P}^{j})}{[\mathbf{P}^{2} + Q^{2}]^{4}} + 16(z_{2} - z_{1})\frac{(\mathbf{k} \cdot \mathbf{P})\mathbf{P}^{!}\mathbf{P}^{j}}{[\mathbf{P}^{2} + Q^{2}]^{5}} + O\left(\frac{\mathbf{k}^{2}}{\mathbf{P}^{8}}\right) \right] \\ & \times \int_{\mathbf{b},\mathbf{b}^{j}} e^{-i\mathbf{k}\cdot(\mathbf{b}-\mathbf{b}^{j})} \int_{z^{+},z^{\prime}+} \left[1 + i(z^{+} - z^{\prime})\frac{(\mathbf{P}^{2} + \bar{Q}^{2})}{2q^{+}z_{1}z_{2}} + NNEik \right] \left\langle \mathcal{F}_{i}^{a} - (z^{\prime} + \mathbf{b}^{\prime})\left[\mathcal{U}_{A}^{\dagger}(+\infty,z^{\prime};\mathbf{b}^{\prime})\mathcal{U}_{A}(+\infty,z^{+};\mathbf{b})\right]_{ab} \mathcal{F}_{j}^{b} - (z^{+},\mathbf{b}) \right\rangle \\ \end{split}$$ \Rightarrow NEik corrections and kinematic twist 3 corrections to the $\langle \mathcal{F}_{\perp}^{-} \mathcal{F}_{\perp}^{-} \rangle$ contribution factorize from each other! The "-" momentum extracted from the target can be defined from the conservation relation (where the k^2 term is a twist 4 correction): $$\boxed{\mathbf{x}P_{tar.}^{-} \equiv \check{k}_{1}^{-} + \check{k}_{2}^{-} - q^{-} = \frac{\mathbf{k}_{1}^{2} + m^{2}}{2k_{1}^{+}} + \frac{\mathbf{k}_{2}^{2} + m^{2}}{2k_{2}^{+}} + \frac{Q^{2}}{2q^{+}} = \frac{(\mathbf{P}^{2} + \bar{Q}^{2})}{2q^{+}z_{1}z_{2}} + \frac{\mathbf{k}^{2}}{2q^{+}}}$$ The NEik correction can be summed into a phase! \Rightarrow dependence of the twist 2 gluon TMDs on x $$\begin{split} &\frac{d\sigma_{\gamma_{k}^{+}\rightarrow q_{i}\overline{q}_{2}}}{d\mathbf{P}.\mathbf{S}.} \begin{vmatrix} \mathcal{F}_{\perp}^{-}\mathcal{F}_{\perp}^{-} \\ &= (2q^{+})2\pi\delta(k_{1}^{+}+k_{2}^{+}-q^{+})(ee_{f})^{2}g^{2}4z_{1}^{3}z_{2}^{3}Q^{2} \\ &\times \left[\frac{4\mathbf{P}^{i}\mathbf{P}^{j}}{(\mathbf{P}^{2}+Q^{2})^{4}} - 2(z_{2}-z_{1})\frac{(\mathbf{P}^{i}\mathbf{k}^{j}+\mathbf{k}^{i}\mathbf{P}^{j})}{[\mathbf{P}^{2}+Q^{2}]^{4}} + 16(z_{2}-z_{1})\frac{(\mathbf{k}\cdot\mathbf{P})\mathbf{P}^{i}\mathbf{P}^{j}}{[\mathbf{P}^{2}+Q^{2}]^{5}} + O\left(\frac{\mathbf{k}^{2}}{\mathbf{P}^{8}}\right) \right] \\ &\times \int_{\mathbf{b},\mathbf{b}'} e^{-i\mathbf{k}\cdot(\mathbf{b}-\mathbf{b}')} \int_{z^{+},z'^{+}} e^{i(z^{+}-z'^{+})xP_{tar.}} \left\langle \mathcal{F}_{i}^{a}-(z'^{+},\mathbf{b}')\left[\mathcal{U}_{i}^{\dagger}(+\infty,z'^{+};\mathbf{b}')\mathcal{U}_{A}(+\infty,z^{+};\mathbf{b})\right]_{ab} \mathcal{F}_{j}^{b}-(z^{+},\mathbf{b})\right\rangle + NNEik \end{split}$$ ## Summary To further understand the interplay between CGC and TMD, we studied the NEik DIS dijet cross-section in the back-to-back jets limit, including twist 3 power corrections. Various types of contributions are obtained: - $\langle \mathcal{F}_i^- \mathcal{F}_j^- \rangle$: twist 2 gluon TMDs - In that sector: factorization of kinematic twist 3 and of NEik correction - NEik correction reproduce the expansion of the phase defining the x dependence of the TMDs - Twist 3 gluon TMDs: $\langle \mathcal{F}_i^- \mathcal{F}^{+-} \rangle$ and (for γ_T^*) $\langle \mathcal{F}_l^- \mathcal{F}_{ij} \rangle$, as further NEik corrections. - 3-body twist 3 correlators $\langle \mathcal{F}_i^-\mathcal{F}_j^-\mathcal{F}_l^- \rangle$: beyond TMDs! Already appear in Eikonal contributions. NEik corrections partially resum into phase. Remark: Odd (resp. Even) Twist terms typically proportional to Odd (resp. Even) powers of $\mathbf{P} \cdot \mathbf{k},$ for unpolarized target. \Rightarrow Odd (resp. Even) azimuthal harmonics in terms of P and k