Progress in small-x evolution using the JIMWLK equation with kinematical constraint

Piotr Korcyl

in collaboration with L. Motyka and T. Stebel based on: PK, SoftwareX (2021) arXiv:2009.02045, PK, Eur. Phys. J. C 82 (2022) 369, arXiv:2111.07427

Polish Particle and Nuclear Theory Summit 22-24 November, 2023, IFJ PAN Kraków NATIONAL SCIENCE CENTRE This work is supported by NCN grant nr 2022/46/E/ST2/00346.

Warning notice

Status report: work in progress, no final results yet available.

Basic facts

- JIMWLK equation describes the non-linear small-x evolution
- it uses Wilson lines as fundamental degrees of freedom
- two-point correlation function $\langle U^{\dagger}(x)U(y)\rangle$ gives the dipole amplitude
- two-point correlation functions with derivatives provide a basis for small-x TMD structure functions
- initial condition corresponds to a configuration of Wilson lines
- numerically useful reformulation as a Langevin equation

LO JIMWLK: Langevin formulation
(Rummukainen, Weigert 2004, Lappi, Mantysaari 2014)
$$U(x, s + \delta s) = \exp\left(-\sqrt{\delta s} \sum_{y} U(y, s) (K(x - y) \cdot \xi(y)) U^{\dagger}(y, s)\right) \times U(x, s) \times \exp\left(\sqrt{\delta s} \sum_{y} K(x - y) \cdot \xi(y)\right).$$

∃ >

Initial condition from the McLerran-Venugopalan model

Improved implementation

Figure: Volume dependence of the dipole amplitude in the MV model on the torus. The new method shows negligible finite size and lattice spacing effects.

Including the evolution

Including the running coupling constant (Rummukainen, Weigert 2004)

$$U(x, s + \delta s) = \exp\left(-\sqrt{\delta\sigma}\sum_{y}U(y, s)(\sqrt{\alpha}K(x-y)\cdot\xi(y))U^{\dagger}(y, s)\right) \times U(x, s) \times \exp\left(\sqrt{\delta\sigma}\sum_{y}\sqrt{\alpha}K(x-y)\cdot\xi(y)\right)$$

where $\sqrt{\delta s} = \sqrt{\delta \sigma} \sqrt{\alpha(|\mathbf{x} - \mathbf{y}|)}$.

Coupling constant

$$\alpha_{s}(\mathbf{r}) = \frac{4\pi}{\beta_{0} \ln\left\{\left[\left(\frac{R_{\text{initial}}^{2} \mu_{0}^{2}}{R_{\text{initial}}^{2} \Lambda_{\text{QCD}}^{2}}\right)^{\frac{1}{c}} + \left(\frac{R_{\text{initial}}^{2}}{r^{2}} \frac{4e^{-2\gamma_{E}}}{R_{\text{initial}}^{2} \Lambda_{\text{QCD}}^{2}}\right)^{\frac{1}{c}}\right]^{c}\right\}},$$

Summary of parameters

 $R_{\rm initial}\Lambda$ with $R_{\rm initial}g^2\mu \approx 1$, $R_{\rm initial}\mu_0$, and Λ which provides the units.

Saturation scale evolution speed

LO JIMWLK with running coupling

Figure: $R_{\text{initial}}\Lambda$ is the only parameter of the initial condition and of the evolution. Coinciding data from evolution for different values of $R_{\text{initial}}\Lambda$ corresponds to geometrical scaling.

JIMWLK evolution equation with collinear improvement

Collinear improvement

All order resummation of corrections enhanced by kinematical constraints. Known from BFKL studies to be important to correctly describe phenomenology.

Langevin equation formulation (Hatta, lancu 2016)

At each point of the discretized transverse plane a Wilson line exists with an additional index: the scale at which the final correlator is evaluated. $U(x, R, s + \delta s) =$

$$\exp\left(-\sqrt{\delta\varepsilon}\sum_{y}\sqrt{\alpha_{s}}\theta(s-\rho_{xy}^{R})U(y,\hat{R},s-\Delta_{xy}^{R})[K_{xy}\cdot\xi(y)]U^{\dagger}(y,\hat{R},s-\Delta_{xy}^{R})\right)$$

$$< U(x, R, s) \times \\ \exp\left(\sqrt{\delta\varepsilon} \sum_{y} \sqrt{\alpha_s} \theta(s - \rho_{xy}^R) \mathsf{K}_{xy} \cdot \xi(y)\right),$$

$$\rho_{xy}^R = \ln \frac{(x-y)^2}{R^2}, \ \Delta_{xy}^R = \theta \left(|x-y| - R \right) \rho_{xy}^R, \ \hat{R} = \max(|x-y|, R), \ s = \varepsilon \alpha_s.$$

Saturation scale evolution speed

JIMWLK with collinear improvement

Figure: Preliminary results for the saturation scale evolution speed at $R_{\rm initial}\Lambda = 0.1875$ for different discretizations. Much lower intercept than without the collinear improvement. Evolution at scales shorter than *a* should be performed with another approach.

New developments

BK with collinear improvement

- Non-linear evolution in QCD at high-energy beyond leading order
 B. Ducloué, E. Iancu, A.H. Mueller, G. Soyez, D.N.
 Triantafyllopoulos, JHEP 04 (2019) 081, 1902.06637 [hep-ph]
- HERA data and collinearly-improved BK dynamics
 B. Ducloué, E. Iancu, G. Soyez, D.N. Triantafyllopoulos, Phys.Lett.B 803 (2020) 135305, 1912.09196 [hep-ph]

In summary:

• target rapidity:

$$\eta \equiv \ln rac{P^-}{|q^-|} = \ln rac{2q^+P^-}{Q^2} = \ln rac{1}{x}$$

• dipole rapidity:

$$Y \equiv \ln \frac{q^+}{q_0^+} = \ln \frac{2q^+P^-}{Q_0^2} = \ln \frac{1}{x} + \ln \frac{Q^2}{Q_0^2} = \eta + \rho$$

 Q_0 is a soft scale of the unevolved target.

BK with collinear improvement

Evolution equation in the target rapidity η (Duclué at al., 2019)

$$\frac{\partial \bar{S}_{r=xy}(\eta)}{\partial \eta} = \frac{\bar{\alpha}_s}{2\pi} \int d^2 z \frac{(x-y)^2}{(x-z)^2 (z-y)^2} \theta\left(\eta - \delta_{xyz}\right) \times \\ \times \left[\bar{S}_{xz}(\eta - \delta_{xz,r})\bar{S}_{zy}(\eta - \delta_{zy,r}) - \bar{S}_{xy}(\eta)\right]$$

Comments:

- fixed coupling constant for simplicity
- r = |x y|
- rapidity shifts $\delta_{xz,r} = \max\{0, \ln \frac{r^2}{|x-z|^2}\}$
- $\delta_{xyz} = \max{\{\delta_{xz,r}, \delta_{zy,r}\}}$
- $\bar{S}_{xy}(\eta) = S_{xy}(Y = \eta + \rho)$

BK with collinear improvement

Main differences:

New developments

BK with collinear improvement

Proposal

$$U_{(n+1)\varepsilon}(\mathbf{x},r) = \exp\left(i\sqrt{\varepsilon}\alpha_{n+1}^{L}(\mathbf{x},r)\right)U_{n\varepsilon}(\mathbf{x},r)\exp\left(-i\sqrt{\varepsilon}\alpha_{n+1}^{R}(\mathbf{x},r)\right)$$

where

$$\begin{aligned} \alpha_{n+1}^{L}(\mathbf{x},r) &= \frac{1}{\pi} \int_{\mathbf{z}} \sqrt{\alpha_{s}} \boldsymbol{\theta} (n\varepsilon - \delta_{r_{xz}}^{r}) K_{xz}^{i} \xi_{n\varepsilon}^{i}(\mathbf{z}), \\ \alpha_{n+1}^{R}(\mathbf{x},r) &= \frac{1}{\pi} \int_{\mathbf{z}} \sqrt{\alpha_{s}} \boldsymbol{\theta} (n\varepsilon - \delta_{r_{xz}}^{r}) U_{n\varepsilon - \delta_{r_{xz}}^{r}}^{\dagger}(\mathbf{z},r) K_{xz}^{i} \xi_{n\varepsilon - \delta_{r_{xz}}^{r}}^{i}(\mathbf{z}) U_{n\varepsilon - \delta_{r_{xz}}^{r}}(\mathbf{z},r) \end{aligned}$$

 and

$$\delta_{r_{xz}}^r = \max\{0, \ln\frac{r^2}{r_{xz}^2}\}.$$

프 🖌 🛛 프

Reduction to the BK equation in η

The dipole amplitude is defined as

$$S(\mathbf{x},\mathbf{y}=\mathbf{x}+r,\eta)=\frac{1}{N_c}\langle \mathrm{tr} U^{\dagger}(\mathbf{x},r,\eta)U(\mathbf{x}+r,r,\eta)\rangle.$$

In order to establish the dependence on η we expand $S(x,y=x+r,\eta+\varepsilon)$ in ε ,

$$S(\mathbf{x},\mathbf{y}=\mathbf{x}+r,\eta+\varepsilon)=\frac{1}{N_c}\langle \mathrm{tr} U^{\dagger}(\mathbf{x},r,\eta+\varepsilon)U(\mathbf{x}+r,r,\eta+\varepsilon)\rangle.$$

Reduction to the BK equation in η

Expand the exponentials

$$\exp\left(i\sqrt{\varepsilon}\alpha_{n+1}^{L}(\mathbf{x},r)\right) = 1 + i\sqrt{\varepsilon}\alpha_{n+1}^{L}(\mathbf{x},r) - \frac{1}{2}\varepsilon\left(\alpha_{n+1}^{L}(\mathbf{x},r)\right)^{2},$$
$$\exp\left(-i\sqrt{\varepsilon}\alpha_{n+1}^{R}(\mathbf{x},r)\right) = 1 - i\sqrt{\varepsilon}\alpha_{n+1}^{R}(\mathbf{x},r) - \frac{1}{2}\varepsilon\left(\alpha_{n+1}^{R}(\mathbf{x},r)\right)^{2},$$

leading to

$$\begin{aligned} U_{(n+1)\varepsilon}(\mathbf{x},r) &= U_{n\varepsilon}(\mathbf{x},r) + i\sqrt{\varepsilon} \Big[\alpha_{n+1}^{L}(\mathbf{x},r) U_{n\varepsilon}(\mathbf{x},r) - U_{n\varepsilon}(\mathbf{x},r) \alpha_{n+1}^{R}(\mathbf{x},r) \Big] + \\ &+ \varepsilon \Big[\alpha_{n+1}^{L}(\mathbf{x},r) U_{n\varepsilon}(\mathbf{x},r) \alpha_{n+1}^{R}(\mathbf{x},r) - \frac{1}{2} \Big(\alpha_{n+1}^{L}(\mathbf{x},r) \Big)^{2} U_{n\varepsilon}(\mathbf{x},r) + \\ &- \frac{1}{2} U_{n\varepsilon}(\mathbf{x},r) \Big(\alpha_{n+1}^{R}(\mathbf{x},r) \Big)^{2} \Big], \end{aligned}$$

Example: one of the cross-terms

$$\begin{split} \operatorname{tr} \langle (\alpha^{R})_{n+1}^{\dagger}(\mathbf{x},r) U_{n\varepsilon}^{\dagger}(\mathbf{x},r) U_{n\varepsilon}(\mathbf{y},r) \alpha_{n+1}^{R}(\mathbf{y},r) \rangle_{\xi} &= \\ &= \frac{1}{\pi^{2}} \operatorname{tr} \int_{\mathbf{z},\mathbf{z}'} \alpha_{s} \theta(n\varepsilon - \delta_{r_{yz}}^{r}) \theta(n\varepsilon - \delta_{r_{xz'}}^{r}) U_{n\varepsilon - \delta_{r_{xz'}}^{\dagger}}^{\dagger}(\mathbf{z}',r) t^{a} K_{\mathbf{x}\mathbf{z}'}^{i} \times \\ &\times U_{n\varepsilon - \delta_{r_{xz'}}^{r}}(\mathbf{z}',r) U_{n\varepsilon}^{\dagger}(\mathbf{x},r) \times \\ &\times U_{n\varepsilon}(\mathbf{y},r) U_{n\varepsilon - \delta_{r_{yz}}^{r}}^{\dagger}(\mathbf{z},r) t^{b} K_{yz}^{j} U_{n\varepsilon - \delta_{r_{yz}}^{r}}(\mathbf{z},r) \langle \xi_{a,n+1}^{i}(\mathbf{z}') \xi_{b,n+1}^{j}(\mathbf{z}) \rangle_{\xi} = \\ &= \frac{1}{2\pi^{2}} N_{c}^{2} \int_{z} \alpha_{s} \theta(n\varepsilon - \delta_{r_{xz}}^{r}) \theta(n\varepsilon - \delta_{r_{yz}}^{r}) K_{\mathbf{x}z}^{i} K_{\mathbf{y}z}^{j} S_{6}(\mathbf{x},\mathbf{z},\mathbf{z},\mathbf{y},\delta_{\mathbf{x}z},\delta_{\mathbf{y}z},\eta) + \\ &- \frac{1}{2\pi^{2}} S(\mathbf{x},\mathbf{y},\eta) \int_{z} \alpha_{s} \theta(n\varepsilon - \delta_{r_{xz}}^{r}) \theta(n\varepsilon - \delta_{r_{yz}}^{r}) K_{\mathbf{x}z}^{i} K_{\mathbf{y}z}^{j} \end{split}$$

All the terms yield

$$\begin{aligned} \frac{\partial S(\mathbf{x}, \mathbf{y}, \boldsymbol{\eta})}{\partial \boldsymbol{\eta}} &= \frac{\bar{\alpha}_{s}}{2\pi} \int_{z} S(\mathbf{x}, \mathbf{y}, \boldsymbol{\eta}) \\ \left\{ -\theta(n\varepsilon - \delta_{r_{yz}}^{r}) K_{yz}^{i} K_{yz}^{i} - \theta(n\varepsilon - \delta_{r_{xz}}^{r}) K_{xz}^{i} K_{xz}^{i} + \theta(n\varepsilon - \delta_{r_{xz}}^{r}) \theta(n\varepsilon - \delta_{r_{yz}}^{r}) K_{xz}^{i} K_{yz}^{i} \right\} + \\ &+ \left\{ \theta(n\varepsilon - \delta_{r_{yz}}^{r}) K_{yz}^{i} K_{yz}^{i} S_{2}(\mathbf{x}, \mathbf{z}, \mathbf{z}, \mathbf{y}, \delta_{yz}, \delta_{yz}, \boldsymbol{\eta}) + \\ &+ \theta(n\varepsilon - \delta_{r_{xz}}^{r}) K_{xz}^{i} K_{xz}^{i} S_{2}(\mathbf{x}, \mathbf{z}, \mathbf{z}, \mathbf{y}, \delta_{xz}, \delta_{xz}, \boldsymbol{\eta}) + \\ &- \theta(n\varepsilon - \delta_{r_{xz}}^{r}) \theta(n\varepsilon - \delta_{r_{yz}}^{r}) K_{xz}^{i} K_{yz}^{i} S_{2}(\mathbf{x}, \mathbf{z}, \mathbf{z}, \mathbf{y}, \delta_{yz}, \delta_{yz}, \boldsymbol{\eta}) + \\ &- \theta(n\varepsilon - \delta_{r_{xz}}^{r}) \theta(n\varepsilon - \delta_{r_{yz}}^{r}) K_{xz}^{i} K_{yz}^{i} S_{2}(\mathbf{x}, \mathbf{z}, \mathbf{z}, \mathbf{y}, \delta_{xz}, \delta_{xz}, \boldsymbol{\eta}) \right\} + \\ &+ \theta(n\varepsilon - \delta_{r_{xz}}^{r}) \theta(n\varepsilon - \delta_{r_{yz}}^{r}) H_{xz}^{i} K_{xz}^{i} K_{yz}^{i} S_{2}(\mathbf{x}, \mathbf{z}, \mathbf{z}, \mathbf{y}, \delta_{xz}, \delta_{xz}, \boldsymbol{\eta}) \right\} + \\ &+ \theta(n\varepsilon - \delta_{r_{xz}}^{r}) \theta(n\varepsilon - \delta_{r_{yz}}^{r}) H_{xz}^{i} K_{xz}^{i} K_{yz}^{i} S_{2}(\mathbf{x}, \mathbf{z}, \mathbf{z}, \mathbf{y}, \delta_{xz}, \delta_{xz}, \boldsymbol{\eta}) \right\} + \\ &+ \theta(n\varepsilon - \delta_{r_{xz}}^{r}) \theta(n\varepsilon - \delta_{r_{yz}}^{r}) H_{xz}^{i} K_{yz}^{i} S_{z}(\mathbf{x}, \mathbf{z}, \mathbf{y}, \delta_{xz}, \delta_{xz}, \boldsymbol{\eta}) \right\} + \\ &+ \theta(n\varepsilon - \delta_{r_{xz}}^{r}) \theta(n\varepsilon - \delta_{r_{yz}}^{r}) \theta(n\varepsilon - \delta_{r_{yz}}^{r}) H_{xz}^{i} K_{yz}^{i} S_{z}(\mathbf{x}, \mathbf{z}, \mathbf{y}, \delta_{xz}, \delta_{xz}, \boldsymbol{\eta}) \right\} + \\ &+ \theta(n\varepsilon - \delta_{r_{xz}}^{r}) \theta(n\varepsilon - \delta_{r_{yz}}^{r}) \theta(n\varepsilon -$$

Recovering KC BK equation in η

Assuming that $\delta_{xz} = \delta_{yz} = \delta$ we have

$$S_{6}(\mathbf{x}, \mathbf{z}, \mathbf{z}, \mathbf{y}, \delta_{\mathbf{xz}}, \delta_{\mathbf{yz}}, \eta) = \\ = \frac{1}{N_{c}^{2}} \operatorname{tr} \left[U_{n\varepsilon - \delta_{r_{\mathbf{xz}}}^{r}}(\mathbf{z}, r) U_{n\varepsilon}^{\dagger}(\mathbf{x}, r) U_{n\varepsilon}(\mathbf{y}, r) U_{n\varepsilon - \delta_{r_{\mathbf{yz}}}^{r}}^{\dagger}(\mathbf{z}, r) \right] \times \\ \times \operatorname{tr} \left[U_{n\varepsilon - \delta_{r_{\mathbf{xz}}}^{r}}^{\dagger}(\mathbf{z}, r) U_{n\varepsilon - \delta_{r_{\mathbf{yz}}}^{r}}(\mathbf{z}, r) \right] = \\ = \frac{1}{N_{c}} \operatorname{tr} \left[U_{n\varepsilon}^{\dagger}(\mathbf{x}, r) U_{n\varepsilon}(\mathbf{y}, r) \right] = S(\mathbf{x}, \mathbf{y}, \eta)$$

and setting

$$S_2(\mathsf{x},\mathsf{z},\mathsf{z},\mathsf{y},\delta_{\mathsf{xz}},\delta_{\mathsf{xz}},\eta) = S_2(\mathsf{x},\mathsf{z},\mathsf{z},\mathsf{y},\delta_{\mathsf{yz}},\delta_{\mathsf{yz}},\eta) \equiv S_2(\mathsf{x},\mathsf{z},\mathsf{z},\mathsf{y},\delta,\eta)$$

in that case the final results reduces to

$$\frac{\partial S(\mathsf{x},\mathsf{y},\eta)}{\partial \eta} = \frac{\bar{\alpha}_{\mathsf{s}}}{2\pi} \int_{\mathsf{z}} \mathscr{K}_{\mathsf{x}\mathsf{y}\mathsf{z}} \theta(\mathsf{n}\varepsilon - \delta) \Big\{ S_2(\mathsf{x},\mathsf{z},\mathsf{z},\mathsf{y},\delta,\eta) - S(\mathsf{x},\mathsf{y},\eta) \Big\}$$

Preliminary results

Preliminary results

Preliminary results

-

Summary

- JIMWLK equation provides a way to describe DIS data deep in the low-x regime
- numerical implementation and solution possible using the reformulation in terms of Langevin equation
- many systematic effects/ambiguities have to be studied and understood
- collinear resummation for the JIMWLK evolution possible

Outlook

o phenomenological implications/applications will soon be at reach!