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JIMWLK evolution equation

Warning notice

Status report: work in progress, no final results yet available.

Basic facts
JIMWLK equation describes the non-linear small-x evolution
it uses Wilson lines as fundamental degrees of freedom
two-point correlation function ⟨U†(x)U(y)⟩ gives the dipole
amplitude
two-point correlation functions with derivatives provide a basis for
small-x TMD structure functions
initial condition corresponds to a configuration of Wilson lines
numerically useful reformulation as a Langevin equation
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JIMWLK evolution equation

LO JIMWLK: Langevin formulation
(Rummukainen, Weigert 2004, Lappi, Mantysaari 2014)

U(x,s+δ s) = exp

(
−
√

δ s∑
y
U(y,s)(K(x−y) ·ξ (y))U†(y,s)

)
×

×U(x,s)× exp

(
√

δ s∑
y

K(x−y) ·ξ (y)

)
.
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Initial condition from the McLerran-Venugopalan model

Improved implementation
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Figure: Volume dependence of the dipole amplitude in the MV model on the
torus. The new method shows negligible finite size and lattice spacing effects.
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Including the evolution

Including the running coupling constant
(Rummukainen, Weigert 2004)

U(x,s+δ s) = exp

(
−
√

δσ ∑
y
U(y,s)(

√
αK(x−y) ·ξ (y))U†(y,s)

)
×

×U(x,s)× exp

(
√

δσ ∑
y

√
αK(x−y) ·ξ (y)

)

where
√

δ s =
√

δσ
√

α(|x−y|).

Coupling constant

αs(r) =
4π

β0 ln
{[( R2

initialµ
2
0

R2
initialΛ

2
QCD

) 1
c +
(R2

initial
r2

4e−2γE

R2
initialΛ

2
QCD

) 1
c
]c} ,

Summary of parameters

RinitialΛ with Rinitialg
2µ ≈ 1, Rinitialµ0, and Λ which provides the units.
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Saturation scale evolution speed

LO JIMWLK with running coupling
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Figure: RinitialΛ is the only parameter of the initial condition and of the
evolution. Coinciding data from evolution for different values of RinitialΛ
corresponds to geometrical scaling.
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JIMWLK evolution equation with collinear improvement

Collinear improvement

All order resummation of corrections enhanced by kinematical
constraints. Known from BFKL studies to be important to correctly
describe phenomenology.

Langevin equation formulation
(Hatta, Iancu 2016)

At each point of the discretized transverse plane a Wilson line exists with
an additional index: the scale at which the final correlator is evaluated.

U(x,R,s+δ s) =

exp
(
−
√

δε ∑
y

√
αsθ(s−ρ

R
xy)U(y, R̂,s−∆R

xy )
[
Kxy ·ξ (y)

]
U†(y, R̂,s−∆R

xy )
)

×U(x,R,s)×

exp
(√

δε ∑
y

√
αsθ(s−ρ

R
xy)Kxy ·ξ (y)

)
,

ρR
xy = ln (x−y)2

R2 , ∆R
xy = θ

(
|x−y |−R

)
ρR

xy, R̂ =max(|x−y |,R), s = εαs .
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Saturation scale evolution speed

JIMWLK with collinear improvement
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Figure: Preliminary results for the saturation scale evolution speed at
RinitialΛ = 0.1875 for different discretizations. Much lower intercept than
without the collinear improvement. Evolution at scales shorter than a should be
performed with another approach.
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New developments

BK with collinear improvement

Non-linear evolution in QCD at high-energy beyond leading order
B. Ducloué, E. Iancu, A.H. Mueller, G. Soyez, D.N.
Triantafyllopoulos, JHEP 04 (2019) 081, 1902.06637 [hep-ph]
HERA data and collinearly-improved BK dynamics
B. Ducloué, E. Iancu, G. Soyez, D.N. Triantafyllopoulos, Phys.Lett.B
803 (2020) 135305, 1912.09196 [hep-ph]

In summary:
target rapidity:

η ≡ ln
P−

|q−|
= ln

2q+P−

Q2 = ln
1
x

dipole rapidity:

Y ≡ ln
q+

q+0
= ln

2q+P−

Q2
0

= ln
1
x
+ln

Q2

Q2
0
= η +ρ

Q0 is a soft scale of the unevolved target.
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New developments

BK with collinear improvement

Evolution equation in the target rapidity η (Duclué at al., 2019)

∂ S̄r=xy (η)

∂η
=

ᾱs

2π

∫
d2z

(x−y)2

(x− z)2(z−y)2
θ

(
η −δxyz

)
×

×
[
S̄xz(η −δ xz ,r )S̄zy (η −δ zy ,r )− S̄xy (η)

]
Comments:

fixed coupling constant for simplicity
r = |x−y |
rapidity shifts δ xz ,r =max{0, ln r2

|x−z |2 }

δxyz =max{δxz ,r ,δzy ,r}
S̄xy (η) = Sxy (Y = η +ρ)
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New developments

BK with collinear improvement

Main differences:

dipole rapidity: target rapidity:

ρR
xz = ln |x−z |2

R2 δxz ,r =max{0, ln r2

|x−z |2 }
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New developments

BK with collinear improvement
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JIMWLK in η with collinear improvement

Proposal

U(n+1)ε(x, r) = exp
(
i
√

εα
L
n+1(x, r)

)
Unε(x, r)exp

(
− i

√
εα

R
n+1(x, r)

)
where

α
L
n+1(x, r) =

1
π

∫
z

√
αsθ(nε −δ

r
rxz )K

i
xzξ

i
nε(z),

α
R
n+1(x, r) =

1
π

∫
z

√
αsθ(nε −δ

r
rxz )U

†
nε−δ r

rxz
(z, r)K i

xzξ
i
nε−δ r

rxz
(z)Unε−δ r

rxz
(z, r).

and

δ
r
rxz =max{0, ln r2

r2
xz
}.
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JIMWLK in η with collinear improvement

Reduction to the BK equation in η

The dipole amplitude is defined as

S(x,y = x+ r ,η) =
1
Nc

⟨trU†(x, r ,η)U(x+ r , r ,η)⟩.

In order to establish the dependence on η we expand
S(x,y = x+ r ,η + ε) in ε,

S(x,y = x+ r ,η + ε) =
1
Nc

⟨trU†(x, r ,η + ε)U(x+ r , r ,η + ε)⟩.
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JIMWLK in η with collinear improvement

Reduction to the BK equation in η

Expand the exponentials

exp
(
i
√

εα
L
n+1(x, r)

)
= 1+ i

√
εα

L
n+1(x, r)−

1
2

ε

(
α
L
n+1(x, r)

)2
,

exp
(
− i

√
εα

R
n+1(x, r)

)
= 1− i

√
εα

R
n+1(x, r)−

1
2

ε

(
α
R
n+1(x, r)

)2
,

leading to

U(n+1)ε(x, r)=Unε(x, r)+ i
√

ε

[
α
L
n+1(x, r)Unε(x, r)−Unε(x, r)αR

n+1(x, r)
]
+

+ ε

[
α
L
n+1(x, r)Unε(x, r)αR

n+1(x, r)−
1
2

(
α
L
n+1(x, r)

)2
Unε(x, r)+

− 1
2
Unε(x, r)

(
α
R
n+1(x, r)

)2]
,
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JIMWLK in η with collinear improvement

Example: one of the cross-terms

tr⟨(αR)†
n+1(x, r)U

†
nε(x, r)Unε(y, r)αR

n+1(y, r)⟩ξ =

=
1

π2 tr
∫
z,z′

αsθ(nε −δ
r
ryz )θ(nε −δ

r
rxz ′

)U†
nε−δ r

rxz ′
(z′, r)taK i

xz ′×

×Unε−δ r
rxz ′

(z′, r)U†
nε(x, r)×

×Unε(y, r)U†
nε−δ r

ryz
(z, r)tbK j

yzUnε−δ r
ryz
(z, r)⟨ξ i

a,n+1(z
′)ξ j

b,n+1(z)⟩ξ =

=
1

2π2N
2
c

∫
z
αsθ(nε −δ

r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yzS6(x,z,z,y,δxz ,δyz ,η)+

− 1
2π2 S(x,y,η)

∫
z
αsθ(nε −δ

r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yz
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JIMWLK in η with collinear improvement

All the terms yield

∂S(x,y,η)

∂η
=

ᾱs

2π

∫
z
S(x,y,η){

−θ(nε−δ
r
ryz )K

i
yzK

i
yz−θ(nε−δ

r
rxz )K

i
xzK

i
xz+θ(nε−δ

r
rxz )θ(nε−δ

r
ryz )K

i
xzK

i
yz

}
+

+
{

θ(nε −δ
r
ryz )K

i
yzK

i
yzS2(x,z,z,y,δyz ,δyz ,η)+

+θ(nε −δ
r
rxz )K

i
xzK

i
xzS2(x,z,z,y,δxz ,δxz ,η)+

−θ(nε −δ
r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yzS2(x,z,z,y,δyz ,δyz ,η)+

−θ(nε −δ
r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yzS2(x,z,z,y,δxz ,δxz ,η)

}
+

+θ(nε −δ
r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yzS6(x,z,z,y,δxz ,δyz ,η)
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JIMWLK in η with collinear improvement

Recovering KC BK equation in η

Assuming that δxz = δyz = δ we have

S6(x,z,z,y,δxz ,δyz ,η) =

=
1
N2
c

tr
[
Unε−δ r

rxz
(z, r)U†

nε(x, r)Unε(y, r)U†
nε−δ r

ryz
(z, r)

]
×

× tr
[
U†
nε−δ r

rxz
(z, r)Unε−δ r

ryz
(z, r)

]
=

=
1
Nc

tr
[
U†
nε(x, r)Unε(y, r)

]
= S(x,y,η)

and setting

S2(x,z,z,y,δxz ,δxz ,η) = S2(x,z,z,y,δyz ,δyz ,η)≡ S2(x,z,z,y,δ ,η)

in that case the final results reduces to

∂S(x,y,η)

∂η
=

ᾱs

2π

∫
z
Kxyzθ(nε −δ )

{
S2(x,z,z,y,δ ,η)−S(x,y,η)

}
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JIMWLK in η with collinear improvement

Preliminary results
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JIMWLK in η with collinear improvement

Preliminary results
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JIMWLK in η with collinear improvement

Preliminary results
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Conclusions

Summary

JIMWLK equation provides a way to describe DIS data deep in the
low-x regime
numerical implementation and solution possible using the
reformulation in terms of Langevin equation
many systematic effects/ambiguities have to be studied and
understood
collinear resummation for the JIMWLK evolution possible

Outlook

phenomenological implications/applications will soon be at reach!
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