Single inclusive particle production in pA collisions at forward rapidities at NLO

Tolga Altinoluk

National Centre for Nuclear Research (NCBJ), Warsaw

Polish Particle and Nuclear Theory Summit IFJ, PAN, Krakow

November 22, 2023

CGC in a nutshell

DIS in QCD :

Three Lorentz invariant quantities :
(1) $q^{2}=-Q^{2} \equiv$ virtuality of the incoming photon
(2) $x=\frac{Q^{2}}{2 P \cdot Q} \equiv$ longitudinal momentum fraction carried by the parton
(3) $s \simeq 2 P \cdot Q \equiv$ energy of the colliding $\gamma-p$ system
increasing the energy $\left(s=Q^{2} / x\right)$ of the system:

Bjorken limit fixed $x, Q^{2} \rightarrow \infty$

- density of partons decreases/DGLAP

Regge-Gribov limit fixed $Q^{2}, x \rightarrow 0$

- density of partons increases/Saturation!
- $Q_{s} \equiv$ saturation scale
- In the saturation regime, scattering processes are described by an effective theory:

Color Glass Condensate:

- fast partons: $k^{+}>\Lambda^{+} \rightarrow$ color sources: $J^{\mu}(x)=\delta^{\mu+} \rho\left(x^{-}, x_{\perp}\right)$
- slow partons: : $k^{+}<\Lambda^{+} \rightarrow$ color fields $A^{\mu}(x)$
- interaction: $\int d^{4} x J^{\mu}(x) A_{\mu}(x)$

Motivation to go from LO to NLO in the CGC

Leading Order in α_{s} CGC calculations:

(pro) : CGC-based theoretical calculations are in qualitative agreement with the experimental data from all types of collisions
(con): LO CGC lacks precision in order to determine unambiguously whether saturation is exhibited by the experimental data.
increasing precision of theory predictions in order to perform precise quantitative studies:

* relaxing the kinematical approximations performed at LO (see talk by Beuf)
\star going from LO to NLO in α_{s} :
There has been a lot activity to provide expressions of observables at NLO.
eA collisions
- dipole factorization
- structure functions/ dijets
pA collisions
- hybrid factorization
- single inclusive hadron/jet
\star Many developments on the NLO corrections to the rapidity evolution equations (see talk by Korcyl)

Forward hadron production in pA collisions

[Dumitru, Hayashigaki, Jalilian-Marian - hep-ph/0506308]
Accepted calculation framework for forward production in pA collisions: Hybrid factorization

- The wave function of the projectile proton is treated in the spirit of collinear factorization (an assembly of partons with zero intrinsic transverse momenta) - DGLAP gives perturbative corrections.
- Target is treated as distribution of strong color fields which during the scattering event transfer transverse momentum to the propagating partonic configuration. (CGC like treatment)

$$
\frac{d \sigma^{q \rightarrow H}}{d^{2} k d \eta}=\int_{x_{F}}^{1} \frac{d \zeta}{\zeta^{2}} D_{\mu_{0}^{2}}^{q}(\zeta) \frac{x_{F}}{\zeta} f_{\mu_{0}^{2}}^{q}\left(\frac{x_{F}}{\zeta}\right) \int e^{i k\left(x_{0}-x_{1}\right)}\left\langle s\left(x_{0}, x_{1}\right)\right\rangle
$$

dipole operator: $s\left(x_{0}, x_{1}\right)=\frac{1}{N_{c}} \operatorname{tr}\left[U\left(x_{0}\right) U^{\dagger}\left(x_{1}\right)\right]$
high transverse momentum in the produced hadron is acquired from the interaction with the target.

Forward hadron production

Does LO "Hybrid" formula take into account all contributions at high k_{\perp} ?
[TA, Kovner - arXiv:1102.5327]
For $k_{\perp} \gg Q_{s}$:
$\frac{d \sigma}{d^{2} k d \eta} \propto\left[\frac{d \sigma}{d^{2} k d \eta}\right]_{\text {el. }}+\left[\frac{d \sigma}{d^{2} k d \eta}\right]_{\text {inel } .}$
Real contributions at NLO.
"Elastic Scattering" (LO) "Inelastic Scattering" (NLO)

[Chirilli, Xiao, Yuan - arXiv:1112.1061 / arXiv:1203.6139] \rightarrow Full NLO computation.
Collinear divergences: absorbed into DGLAP evolution of PDFs and FFs.
Rapidity divergences: absorbed into evolution of the target.
[Stasto, Xiao, Zaslavsky - arXiv:1307.4057] \rightarrow Numerical studies of full NLO result.

cross sections turn out to be negative at large transverse momentum!

Several solutions proposed to fix the problem:

- kinematical constraints
- different choice of rapidity scales
- threshold/ Sudakov resummations

Revisiting NLO hybrid formula - kinematical constraints

[TA, Armesto, Beuf, Kovner, Lublinsky - arXiv:1411.2869]

- choice of frame:
(i) target moves fast and carries almost all the energy.
(ii) projectile moves fast enough: accommodates partons with momentum fraction x_{p} but does not develop a large low-x tail.
(iii) target is evolved to s from initial s_{0} via BK.
- loffe time restriction: only pairs whose coherence time is greater than the propagation time through the target can be resolved.

$$
\text { coherent scattering } \rightarrow \frac{(1-\xi) \xi x_{p}}{I_{\perp}^{2}}>\frac{1}{s_{0}}
$$

New BK-like terms arise due to loffe time restriction.
[Watanabe, Xiao, Yuan, Zaslavsky - arXiv:1505.05183] \rightarrow exact kinematical constraint.

$$
\int_{0}^{1-\frac{l_{\perp}^{2}}{x_{\rho} s}} \frac{d \xi}{(1-\xi)}=\ln \frac{1}{x_{g}}+\ln \frac{k_{\perp}^{2}}{l_{\perp}^{2}}
$$

New terms $\left(L_{q}+L_{g}\right)$ arise from $I_{\perp}^{2}<(1-\xi) k_{\perp}^{2}$
The new terms in both works are consistent and equivalent.

Revisiting NLO hybrid formula - kinematical constraints

[Watanabe, Xiao, Yuan, Zaslavsky - arXiv:1505.05183]

BRAHMS data with $\sqrt{s_{N N}}=200 \mathrm{GeV}$.
The negativity problem is shifted to higher transverse momentum but not cured!
[Xiao, Yuan - arXiv:1806.0352], [Shi, Wang, Wei, Xiao - arXiv:2112.06975]
A new proposal:

- resum soft logs \rightarrow Sudakov resummation
- resum collinear logs \rightarrow Threshold resummation (DGLAP of PDFs or FFs)

A new approach to forward pA scatterings

Common assumption in all these works: large logs can be resummed within the collinear factorization.
[TA, Armesto, Kovner, Lublinsky - arXiv: 2307.14922]
TMD-factorized framework is a natural choice to resum all large logs.
in [arXiv:1102.5327], the mechanisms that give rise to high transverse momentum hadrons:

- It is more natural to think the inelastic contribution in the TMD framework: produced high k_{T} quark coming directly from quark $T M D P D F$.
* another potential source to producing high transverse momentum hadron:
low k_{T} parton scatters softly, but subsequently fragments into a high transverse momentum hadron.
-Hadron arising from TMD FF.
* soft logs - we follow [arXiv:1411.2869]

The setup of the problem

[TA, Armesto, Kovner, Lublinsky - arXiv:2307.14922]
TMD-factorized parton model expression:

$$
\frac{d \sigma^{L O+N L O}}{d^{2} p_{\perp} d \eta} \propto \int \frac{d \zeta}{\zeta^{2}} \int_{k_{\perp} q_{\perp}} \mathcal{T}\left(x_{F} / \zeta, k_{\perp} ; \mu_{T}^{2}\right) P\left(k_{\perp}, q_{\perp}\right) \mathcal{F}\left(\zeta, p_{\perp},\left(k_{\perp}+q_{\perp}\right) ; \mu_{F}^{2}\right)+\text { Gen. NLO }
$$

Dilute projectile, P

$\mathcal{T}\left(x_{F} / \zeta, k_{\perp} ; \mu_{T}^{2}\right) \rightarrow$ initial TMD PDF $\mathcal{F}\left(\zeta, p_{\perp},\left(k_{\perp}+q_{\perp}\right) \rightarrow\right.$ TMD FF
$P\left(k_{\perp}, q_{\perp}\right) \rightarrow$ differential probability to produce a parton with momentum $\left(k_{\perp}+q_{\perp}\right)$ from a parton with momentum k_{\perp}

The factorization scales:

$$
\left.\mu_{T}^{2}=\max \left\{k_{\perp}^{2}, q_{\perp}^{2}, Q_{s}^{2}\right\} \approx \max \left\{\left(k_{\perp}+q_{\perp}\right)^{2}, Q_{s}^{2}\right\}, \mu_{F}^{2}=\left(\left(q_{\perp}+k_{\perp}\right)-p_{\perp} / \zeta\right)^{2}\right) \approx \max \left\{\left(q_{\perp}+k_{\perp}\right)^{2},\left(p_{\perp} / \zeta\right)^{2}\right\}
$$

TMD distributions

- TMD PDFs are generated from the collinear ones (large k)

$$
x \mathcal{T}_{q}\left(x, k^{2}, k^{2} ; \xi_{0}\right)=\frac{g^{2}}{(2 \pi)^{3}} \frac{N_{c}}{2} \int_{\xi_{0}}^{1} d \xi \frac{1+(1-\xi)^{2}}{\xi} \frac{x}{1-\xi} f_{k^{2}}^{q}\left(\frac{x}{1-\xi}\right) \frac{1}{k^{2}}
$$

- The soft divergence of the gluon emission is regulated by the cut off ξ_{0}.
- Partons with high longitudinal momentum are produced from partons with lower longitudinal momentum by DGLAP splitting.
- Transverse resolution scale in these splittings is equal to the transverse momentum of the parton.
- Evolution of the TMDs

$$
x \mathcal{T}_{q}\left(x, k^{2} ; \mu^{2} ; \xi_{0}\right)=\theta\left(\mu^{2}-k^{2}\right)\left[x \mathcal{T}_{q}\left(x, k^{2} ; k^{2} ; \xi_{0}\right)-\frac{g^{2}}{(2 \pi)^{3}} \frac{N_{c}}{2} \int_{k^{2}}^{\mu^{2}} \frac{\pi d l^{2}}{l^{2}} \int_{\xi_{0}}^{1} d \xi \frac{1+(1-\xi)}{\xi} x \mathcal{T}_{q}\left(x, k^{2} ; l^{2} ; \xi_{0}\right)\right]
$$

Increasing the transverse resolution \Rightarrow number of q at a fixed transverse momentum decreases due to DGLAP splittings into $q g$ pair with higher long. momentum given by the resolution scale.

With these definitions, collinear q-PDF andf TMD q-PDF are related via

$$
x f_{\mu^{2}}^{q}(x)=\int_{0}^{\mu^{2}} \pi d k^{2} x \mathcal{T}_{q}\left(x, k^{2} ; \mu^{2} ; \xi_{0}\right)
$$

And it satisfies the DGLAP evolution equations...

Forward pA - quark channel

- start from the expressions obtained in LCPT (with loffe time restriction) in [arXiv:1411.2869] (no collinear subtraction and no + prescription)
- projectile contains quarks with transverse momentum smaller than μ_{0}, target sits at some rapidity with no need of further evolution.
- assumptions: large N_{c}, factorization of the dipoles, and translationally invariant dipoles.

After Including the fragmentation and FT to momentum space:

$$
\frac{d \sigma^{q \rightarrow q \rightarrow H}}{d^{2} p d \eta}=\frac{d \sigma_{0}^{q \rightarrow q \rightarrow H}}{d^{2} p d \eta}+\frac{d \sigma_{1, \mathrm{r}}^{q \rightarrow q \rightarrow H}}{d^{2} p d \eta}+\frac{d \sigma_{1 \mathrm{v}}^{q \rightarrow q \rightarrow H}}{d^{2} p d \eta}
$$

LO term

$$
\frac{d \sigma_{0}^{q \rightarrow q \rightarrow H}}{d^{2} p d \eta}=S_{\perp} \int_{x_{F}}^{1} \frac{d \zeta}{\zeta^{2}} D_{\mu_{0}^{2}}^{q}(\zeta) \frac{x_{F}}{\zeta} f_{\mu_{0}^{2}}^{q}\left(\frac{x_{F}}{\zeta}\right) s(p / \zeta)
$$

$$
\begin{aligned}
\left.\frac{d \sigma}{d^{2} p d \eta}\right|_{\mathrm{NLO}, \mathrm{r}} ^{\mathrm{q} \rightarrow \mathrm{q}} & =\frac{g^{2}}{(2 \pi)^{3}} S_{\perp} \int_{x_{F}}^{1} \frac{d \zeta}{\zeta^{2}} D_{\mu_{0}^{2}}^{q}(\zeta) \int_{k^{2}, q^{2}>\mu_{0}^{2}} \int_{\xi_{0}} d \xi \frac{x_{F}}{\zeta(1-\xi)} f_{\mu_{0}^{2}}^{q}\left(\frac{x_{F}}{\zeta(1-\xi)}\right) \frac{N_{c}}{2}\left[\frac{1+(1-\xi)^{2}}{\xi}\right] s(k) s(q) \\
& \times\left\{\frac{1}{2} \frac{(q-k)^{2}}{(p / \zeta-k)^{2}(p / \zeta-q)^{2}}+\frac{1}{2} \frac{(1-\xi)^{2}(q-k)^{2}}{[p / \zeta-(1-\xi) k]^{2}[p / \zeta-(1-\xi) q]^{2}}\right\}+(\text { Gen.NLO })_{1}
\end{aligned}
$$

NLO real terms

The first term can be cast into

$$
\frac{1}{2} \int_{k, q} s(k) s(q) \frac{(q-k)^{2}}{(p / \zeta-k)^{2}(p / \zeta-q)^{2}}=\int_{k, q} \frac{1}{k^{2}} s(-k+p / \zeta)\left[1-\frac{k \cdot q}{q^{2}}\right] s(-q+p / \zeta)
$$

Second term (after rescaling $\zeta(1-\xi) \rightarrow \zeta^{\prime}$) can be acts into the same form.
Using the definition of TMD PDF (analogously TMD FF)

$$
x \mathcal{T}_{q}\left(x, k^{2}, k^{2} ; \xi_{0}\right)=\frac{g^{2}}{(2 \pi)^{3}} \frac{N_{c}}{2} \int_{\xi_{0}}^{1} d \xi \frac{1+(1-\xi)^{2}}{\xi} \frac{x}{1-\xi} f_{k^{2}}^{q}\left(\frac{x}{1-\xi}\right) \frac{1}{k^{2}}
$$

The real contribution reads

$$
\begin{aligned}
\frac{d \sigma_{1, \mathrm{r}}^{q \rightarrow q \rightarrow H}}{d^{2} p d \eta}= & S_{\perp} \int_{x_{F}}^{1} \frac{d \zeta}{\zeta^{2}} \int_{k^{2}>\mu_{0}^{2}} \frac{x_{F}}{\zeta}\left\{D_{\mu_{0}^{2}}^{q}(\zeta) \mathcal{T}_{q}\left(\frac{x_{F}}{\zeta}, k^{2} ; k^{2}, \xi_{0}=\frac{k^{2} \zeta}{x_{F} S_{0}}\right)+f_{\mu_{0}^{2}}^{q}\left(\frac{x_{F}}{\zeta}\right) \mathcal{F}^{q}\left(\zeta, k^{2} ; k^{2}, \xi_{0}=\frac{k^{2} \zeta}{x_{F} S_{0}}\right)\right\} \\
& \times \int_{q} s(-k+p / \zeta)\left[1-\frac{k \cdot q}{q^{2}}\right] s(-q+p / \zeta)+(\text { Gen. NLO })
\end{aligned}
$$

- incoming quark with mom. k, scatters with mom exchange $-k+p / \zeta$, outgoing quark with mom. p / ζ collinearly fragments into a hadron with mom. p.
- (shift $k \rightarrow-q+p / \zeta$ and $q \rightarrow-k+p / \zeta$) incoming quark with vanishing mom., scatters with mom. transfer q, first perturbatively fragments into a quark with mom p / ζ, which then fragments into a hadron with momentum p.

NLO virtual contributions

Starting from the expressions in [arXiv:1411.2869], adopting the same assumptions:

$$
\begin{aligned}
& \frac{d \sigma_{1, v}^{q \rightarrow q \rightarrow H}}{d^{2} p d \eta}=-2 \frac{g^{2}}{(2 \pi)^{3}} S_{\perp} \frac{N_{c}}{2} \int_{x_{F}}^{1} \frac{d \zeta}{\zeta^{2}} D_{H, \mu_{0}^{2}}^{q}(\zeta) \int_{k^{2}>\mu_{0}^{2}} \int_{k^{2} \zeta /\left(x_{F} s_{0}\right)}^{1} d \xi \frac{x_{F}}{\zeta} f_{\mu_{0}^{2}}^{q}\left(\frac{x_{F}}{\zeta}\right) \frac{1+(1-\xi)^{2}}{\xi} \\
& \times \int_{q} s\left(\frac{p}{\zeta}\right) s(q)\left\{\left[\frac{\frac{p}{\zeta}-q-k}{\left(\frac{p}{\zeta}-q-k\right)^{2}} \frac{k}{k^{2}}+\frac{1}{k^{2}}\right]+\left[\frac{\frac{p}{\zeta}(1-\xi)-q-k}{\left(\frac{p}{\zeta}(1-\xi)-q-k\right)^{2}}-\frac{\frac{p}{\zeta}-q-k}{\left(\frac{p}{\zeta}-q-k\right)^{2}}\right] \frac{k}{k^{2}}\right\}
\end{aligned}
$$

- incoming q \rightarrow qg pair, pair scatters, recombines into q.
- NLO corr. to LO elastic q scattering.

- qg loop that appears either before or after the scattering.
- "proper" virtual diagram

Does not contain any large logs (a Gen. NLO correction)
in the first term one can perform the angular integration over the angle of vector k :

$$
\int_{\mu_{0}^{2}} d^{2} k\left[\frac{\frac{p}{\zeta}-q-k}{\left(\frac{p}{\zeta}-q-k\right)^{2}} \frac{k}{k^{2}}+\frac{1}{k^{2}}\right]=\int_{\mu_{0}^{2}}^{\left(q-\frac{1}{\zeta} p\right)^{2}} \frac{d^{2} k}{k^{2}}
$$

NLO virtual contributions

The virtual NLO contribution can be split into two intervals

$$
-2 \frac{g^{2}}{(2 \pi)^{3}} S_{\perp} \frac{N_{c}}{2} \int_{x_{F}}^{1} \frac{d \zeta}{\zeta^{2}} D_{H, \mu_{0}^{2}}^{q}(\zeta) \int_{q}\left[\int_{\mu_{0}^{2}}^{\mu^{2}}+\int_{\mu^{2}}^{\left(q-\frac{1}{\zeta} p\right)^{2}}\right] \frac{d^{2} k}{k^{2}} \int_{k^{2} \zeta /\left(x_{F} s_{0}\right)}^{1} d \xi \frac{x_{F}}{\zeta} f_{\mu_{0}^{2}}^{q}\left(\frac{x_{F}}{\zeta}\right) \frac{1+(1-\xi)^{2}}{\xi} s\left(\frac{p}{\zeta}\right) s(q)
$$

- the first term combines with LO to evolve the resolution scale of the TMD to μ^{2}.
- contribution from the pairs of the transverse size close to the resolution scale.
(no large logs \& Gen. NLO correction)
$\mathrm{LO}+\mathrm{NLO}$ virtual:

$$
\begin{aligned}
& S_{\perp} \int_{x_{F}}^{1} \frac{d \zeta}{\zeta^{2}} D_{H, \mu_{0}^{2}}^{q}(\zeta) \frac{x_{F}}{\zeta} f_{\mu_{0}^{2}}^{q}\left(\frac{x_{F}}{\zeta}\right) s\left(\frac{p}{\zeta}\right) \\
& -2 \frac{g^{2}}{(2 \pi)^{3}} S_{\perp} \frac{N_{c}}{2} \int_{x_{F}}^{1} \frac{d \zeta}{\zeta^{2}} D_{H, \mu_{0}^{2}}^{q}(\zeta) \int_{q} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d^{2} k}{k^{2}} \int_{k^{2} \zeta /\left(x_{F} s_{0}\right)}^{1} d \xi \frac{x_{F}}{\zeta} f_{\mu_{0}^{2}}^{q}\left(\frac{x_{F}}{\zeta}\right) \frac{1+(1-\xi)^{2}}{\xi} s\left(\frac{p}{\zeta}\right) \\
& =S_{\perp} \int_{x_{F}}^{1} \frac{d \zeta}{\zeta^{2}} \int_{0}^{\mu_{0}^{2}} d^{2} k\left[D_{H, \mu_{0}^{2}}^{q}(\zeta) \frac{x_{F}}{\zeta} \mathcal{T}_{q}\left(\frac{x_{F}}{\zeta}, k^{2} ; \mu^{2} ; \xi_{0}=\frac{\zeta \mu^{2}}{x_{F} s_{0}}\right)+\mathcal{F}_{H}^{q}\left(\zeta, k^{2} ; \mu^{2} ; \xi_{0}=\frac{\zeta \mu^{2}}{x_{F} s_{0}}\right) \frac{x_{F}}{\zeta} f_{\mu_{0}^{2}}^{q}\left(\frac{x_{F}}{\zeta}\right)\right] s\left(\frac{p}{\zeta}\right)
\end{aligned}
$$

NLO virtual contributions

- evolve the factorization scale in the collinear PDFs and FFs up to μ^{2}

$$
\left.D_{H, \mu_{0}^{2}}^{q}(\zeta) \rightarrow \int_{0}^{\mu_{0}^{2}} d^{2} l \mathcal{F}_{H}^{q}\left(\zeta, l^{2} ; \mu^{2} ; \xi_{0}=\frac{\zeta \mu^{2}}{x_{F} s_{0}}\right) ; \quad f_{\mu_{0}^{2}}^{q} \frac{x_{F}}{\zeta}\right) \rightarrow \int_{0}^{\mu_{0}^{2}} d^{2} k \mathcal{T}_{q}\left(\frac{x_{F}}{\zeta}, k^{2} ; \mu^{2} ; \xi_{0}=\frac{\zeta \mu^{2}}{x_{F} s_{0}}\right)
$$

this introduces the term at $O\left(\alpha_{s}^{2}\right)$ therefore legitimate in our $O\left(\alpha_{s}\right)$ calculation.

- alter the scattering amplitude

$$
s\left(\frac{p}{\zeta}\right) \rightarrow \int_{q} s\left(-(k+l)+\frac{p}{\zeta}\right)\left[1-\frac{(k+l) \cdot q}{q^{2}}\right] s\left(-q+\frac{p}{\zeta}\right)
$$

$\left(|k+I|^{2} \lesssim \mu_{0}^{2} \ll p^{2} / \zeta^{2} \& q^{2} \sim \max \left(Q_{s}^{2}, p^{2} / \zeta^{2}\right) \& \int_{q} s(q)=1\right) \Rightarrow$ this modification only adds subleading power corrections of the order μ_{0}^{2} / Q_{s}^{2}
$\mathrm{LO}+\mathrm{NLO}$ virtual:

$$
\begin{aligned}
& S_{\perp} \int_{x_{F}}^{1} \frac{d \zeta}{\zeta^{2}} \int_{q} \int_{0}^{\mu_{0}^{2}} d^{2} l \int_{0}^{\mu_{0}^{2}} d^{2} k \\
& \quad \times \mathcal{F}_{H}^{q}\left(\zeta, l^{2} ; \mu^{2} ; \xi_{0}=\frac{\zeta \mu^{2}}{x_{F} s_{0}}\right) \frac{x_{F}}{\zeta} \mathcal{T}_{q}\left(\frac{x_{F}}{\zeta}, k^{2} ; \mu^{2} ; \xi_{0}=\frac{\zeta \mu^{2}}{x_{F} s_{0}}\right) s\left(-(k+l)+\frac{p}{\zeta}\right)\left[1-\frac{(k+l) \cdot q}{q^{2}}\right] s\left(-q+\frac{p}{\zeta}\right)
\end{aligned}
$$

LO +NLO virtual+NLO real: Final TMD factorized expression

$$
\begin{aligned}
& S_{\perp} \int_{x_{F}}^{1} \frac{d \zeta}{\zeta^{2}} \int_{q} \int d^{2} l \int d^{2} k \mathcal{F}_{H}^{q}\left(\zeta, l^{2} ; \mu^{2} ; \xi_{0}=\frac{\zeta \mu^{2}}{x_{F} s_{0}}\right) \frac{x_{F}}{\zeta} \mathcal{T}_{q}\left(\frac{x_{F}}{\zeta}, k^{2} ; \mu^{2} ; \xi_{0}=\frac{\zeta \mu^{2}}{x_{F} s_{0}}\right) \\
& \quad \times s\left(-(k+l)+\frac{p}{\zeta}\right)\left[1-\frac{(k+l) \cdot q}{q^{2}}\right] s\left(-q+\frac{p}{\zeta}\right)+(\text { Gen. NLO })
\end{aligned}
$$

- The progress continues in order to provide full NLO results which will provide the necessary precision for quantitive studies to determine whether saturation is exhibited by experimental data.
- We have discussed the issues and the suggested solutions for pA collisions at forward rapidities for NLO calculations.
- A new approach to forward pA scatterings is discussed.

Still have a lot of work to do:

- NLO calc. without TMD FFs, single jet production in forward pA collisions.
- NLO calc. without TMD PDFs, single inclusive hadron production in DIS.

