

LNL accelerator facilities

Luca Bellan on the behalf of INFN-LNL

- Overview of the National Laboratories of Legnaro accelerators
 - Existing accelerators, stable ion production and acceleration for user
- Light ions facilities
 - -CN
 - -AN2000
- Heavy Ions Facility
 - -TANDEM ALPI PIAVE
- General accelerator operation overview
- Upgrades
- Contacts

The LNL accelerators for users supply **light and heavy stable ions in the order of 10 MeV/u**.

for users

- Electrostatic type accelerators
- RF (superconductive) type linac accelerators

under development

- High intensity linac (RFQ IFMIF, DTL ESS, Anthem)
- Irradiation lines for material tests for industries and users.
- Cyclotron and new normal conductive RFQ
- SPES: Radioactive Ion Beams

- Nuclear Physics experiments
- Applied Physics: neutron experiments, medical and industrial applications, accelerator developments

Light ions facilities

Electrostatic type

Accelerator Configuration ^{&}	Beam	E [MeV] [#]	E/A [MeV/A]	I _{target} (nA) ^{@\$}	Time structure
CN	¹ H ⁺	6,0	6,0	up to 4000	continuous or pulsed*
	² H ⁺	6,0	3,0	up to 1000**	continuous
	³ He ⁺	6,0	2,0	up to 30	continuous
	⁴ He⁺	6,0	1,5	up to 1000	continuous or pulsed*
	⁴ He ⁺⁺	12,0	3,0	up to 10	continuous

Van der Graaf accelerator type. Light ions up to 6 MV terminal voltage.

- Used for applied physics and nuclear physics experiment
- Neutron irradiation experiments.
- Pulsing system at 3 MHz is available

Neutron flux irradiation

- MUNES line
 - The line is equipped with a graphite heavy water thermal neutron moderator that generates a neutron flux of 4.5 × 10⁵ n/(s·cm2), 96% fraction [0,1]
 - Test of the composite target material: blistering, resistance to power deposition (up to 3 kW/cm², beam spot 1 mm radius)
- 0 Line: can be equipped with Li target or Be target.
 - In the latter case, we can reach a neutron flux (5 MeV protons, 3 uA) of 4.5×10⁹ s peaked at 1.2 MeV, with maximum 3.2 MeV.
 - Can be equipped with different moderators.

Test of neutron converter for accelerators, materials

n, γ spectra analysis Moderator Be target integri

IFAST

European

Commission

Courtesy of Anna Selva. anna.selva@Inl.infn.it

[0] Selva et al, 2022, "Microdosimetry of an accelerator based thermal neutron field for Boron Neutron Capture Therapy" Appl. Radiat. Isot. 182, 110144"

100

AGNET NFRASTRUCTURE

[1] Agosteo et al, 2011, "Characterization of the energy distribution of neutrons generated by 5 MeV protons on a thick beryllium target at different emission angles.", Appl. Radiat. Isot. 69, 1664"

Van der Graaf accelerator type. Light ions with 2 MV terminal voltage

Accelerator Configuration	Beam	E [MeV] [£]	E/A [MeV/A]	I _{target} (nA) [§]	Time structure
AN2000	¹ H ⁺	2,0	2,0	up to 1000	continuous
	³ He ⁺	2,0	0,7	up to 30	continuous
	⁴ He⁺	2,0	0,5	up to 1000	continuous

- Used for applied physics and nuclear physics experiment
- Microbeam experiments

AN2000 - microbeam

Accelerator components tests AN2000

Courtesy of Pierfrancesco Mastinu

- Beam based alignment of the new SPES diagnostics
- Relation between the centre of the wire and the actual position of the beam

Heavy ion facility RF type*

*Tandem type accelerator also

Tandem-ALPI-PIAVE facility

- Tandem XTU accelerator
- 14 MV terminal voltage
- Negative ion source
- Up to light-medium A (around 50) for ALPI injection
- Highest energies output for light ions, 22 MeV/u

Tandem-ALPI-PIAVE facility

- PIAVE superconductive RFQ
- Medium heavy mass, 50 < A < 208
- External buncher three harmonics , two RFQ cavities (80 MHz) with $\lambda\beta/4$ inter-tank distance
- ECR nanogan ion source

Tandem-ALPI-PIAVE facility

Up to hundreds nA, max A/q = 8 (NO SC issue whatsoever, problem on the applied fields) From C to Pb (to U) and stable isotopes.

- ALPI beams, from TANDEM and PIAVE
- Drop in energy output in 2023 is due to no experiments requested at 1300 MeV.
- ²³⁸U under authorization procedure.

Accelerator components tests TAP - 2

• Test on PIAVE LEBT of new beam profiler

Installed new diagnostic box for testing accelerator components:

Test of RIB profiler signal and RIB robustness

- ¹³⁶Xe¹⁸⁺ @ 2.23 MeV, I = 1.3 uA, 3 W
- Possible to ramp up to 8 MeV, 2 uA, 16 W.

0.98-1.1 mW (interceped power on the central wire)

Istitute Nazionale di Fisica Nucleare

Accelerator components tests TAP - 3

 Test on ALPI of FFC for longitudinal beam measurements

- The beam was ¹⁸O⁶⁺ at 100.26 MeV, 100 nA from TANDEM.
- The 80 MHz buncher AL.HEB.01 was used in order to focus the beam longitudinally at test BOX diagnostics (which contains the FFC)

Istituto Nazionale di Fisica Nucleare

Irradiation for industries

- First irradiation service for private company successfully tested before summer 2023.
- A ¹³⁶Xe beam was accelerated with PIAVE-ALPI complex up to 1 GeV energy and sent to SIRAD irradiation chamber.
- Flux dosimeter and uniformity calibration was performed by 2 boards hosting 4 silicon diodes each.

- Average beam flux was about 2 x 10³ ions/cm²/sec and total accumulated flux was 1 x 10⁷ ions/cm² in 8.3 min exposure.
- LET = 89.5 MeV cm²/mg

Courtesy of Jeff Wyss, wyss@unicas.it

General overview

Experiments - overview

Applied physics:

- Surface studies (sputtering characteristics)
- Irradiation for material/components testing
- Medical physics
- Radiological studies

Accelerator tests:

- Accelerator improvement studies
- Experimental run feasibility studies
- Diagnostics and accelerators components tests
- High level application tests.

Accelerators overview

Upgrades

Tandem-ALPI-PIAVE – Normal conductive RFQ

- SPES RFQ: normal conductive 4-vane internal bunching RFQ
 - coupled with SPES Charge-Breeder (ECRIS type) and MRMS
- Higher energy injection to ALPI, 727 keV/u VS 587.5 keV/u (PIAVE)
- Optimized longitudinal emittance output
- Higher RFQ transmission: 93% SPES vs 55% PIAVE

Radioactive ion beams input through the SPES RFQ

Use of existing superconductive linac ALPI to post accelerate the RIBs

AGATA AGATA: HPGe detector array

Littute Nazionale di Fisica Nucleare

LISTER AND A CONTRACT OF CONTRACT.

Normal conductive cyclotron with double extraction lines (70 MeV protons at 800 uA). It is under commissioning, and it will be equipped with eight target stations. Main stations here

- LARAMED: research on medical radionucleotides
- ISOL 1 & 2 : SPES and other activities

CN – irradiation upgrade

- BEAM FEATURES:
 - Monochromatic Beams: ¹H+, ⁴He+
 - Energy: 0.2÷5.5 MeV
 - Standard Beam Size: 2+8 mm (FWHM)
 - Beam Current: 1-400nA (typical)- (400nA 2µA energy dependent)
- IRRADIATION SPECIFICATIONS OF THE NEW FACILITY
 - Large area uniform irradiation of spacecraft materials and components in a wide range of energies and fluences
 - Fluence: 1x10⁹ ÷ 10¹⁶ cm⁻²
 - Energy: 0.2÷5.5 MeV
 - Large area
 - ΔX·ΔY=20x20cm² @ 2 MeV, ΔX·ΔY=8·8cm² a 5.5 MeV
 - XY beam scanning
 - Uniformity
 - Spatial uniformity: target $\leq \pm 1\%$
 - Accuracy
 - Accuracy: base $\leq \pm 5\%$ target to $\leq \pm 3\%$ (multiple Faraday cups)
 - No Carbon build-up (cryogenic LN2 trap)
 - Time for full irradiation
 - From 30s to several hours
 - Certification of irradiation: ESA/ASI ongoing

Courtesy of Valentino Rigato and Matteo Campostrini – valentino.rigato@Inl.infn.it

AN2000 – line upgrades

μm

 ΔY travel: 100mm, bi-direct. repeatability ±50 nm ΔZ travel: 50mm, bi-direct. repeatability ±50

nm ΔX travel: 150mm, bi-direct. repeatability ±2

Collimator holder

Parallel-kinematic design for six degrees of freedom (X, Y, Z, θ_X , θ_Y , θ_Z) for collimator precise alignment with ion beams

- ► Shoot single ions in precise position (Z_i, Y_i) in ΔZ , ΔY steps
 - 2D array of individual defects
 - Single photon sources (eg.: QUANTEP)
- Vary the energy keeping the DUT-collimator relative position fixed
 - Individual centers in 3D (Z_i , Y_i , X_i)

► Vary ion specie at same (Z_i,Y_i) position: creation of totally new color centers / defects with multiple single ion implantation in semi and super conductors

 Localized irradiation of nano-wires and band engineered low-D materials(IV, III-V) (QUANTUM SENSING and METROLOGY, PHOTONICS)

Courtesy of Valentino Rigato and Matteo Campostrini – valentino.rigato@Inl.infn.it

beam

Chamber at 0° beam-line at AN2000

- Low divergence ion beams
- Vibration free pumping system
- Water with temperature control ($\pm 0.5^{\circ}$ C)
- Vacuum: ≤1x10⁻⁷ mbar

Contact information:

Accelerator Division (beam requests and questions)

- enrico.fagotti@lnl.infn.it Accelerator division head
- giovanni.bisoffi@Inl.infn.it
- luca.bellan@lnl.infn.it
- PACbeams@Inl.infn.it (information about beams, species energies)

