The MSSM with large \(\tan \beta \)

beyond the decoupling limit

Lars Hofer

Institut für theoretische Teilchenphysik
Universität Karlsruhe

in collaboration with Ulrich Nierste and Dominik Scherer

EPS HEP, Krakow, July 2009
The pattern of $\tan\beta$-enhancement

- The MSSM contains two Higgs doublets H_u, H_d.
 Both acquire vevs: $v_u, v_d \rightarrow \tan \beta \equiv \frac{v_u}{v_d}$

- Large $\tan \beta \iff$ small v_d
The pattern of $\tan \beta$-enhancement

- The MSSM contains two Higgs doublets H_u, H_d.
 Both acquire vevs: $v_u, v_d \rightarrow \tan \beta \equiv \frac{v_u}{v_d}$

- large $\tan \beta \iff$ small v_d

- Consider tree-level amplitude with suppression v_d.
 One-loop corrections may involve v_u instead.
 \[[\text{Hall}, \text{Rattazzi}, \text{Sarid}; \text{Blazek}, \text{Raby}, \text{Pokorski}] \]

- Example: b-quark mass

 \[
 \begin{align*}
 m_b &\sim v_d \\
 \delta m_b &\sim \epsilon \cdot v_u \\
 \frac{\delta m_b}{m_b} &\sim \epsilon \cdot \tan \beta \\
 &\sim \mathcal{O}(1)
 \end{align*}
 \]
Two possibilities to deal with such $\mathcal{O}(1)$ corrections

1. Effective Lagrangian for $M_{\text{SUSY}} \gg v, M_A^0, M_{H^0}, M_{H^+}$

2. Calculation in the full MSSM beyond decoupling
Effective Lagrangian vs. full MSSM

- Two possibilities to deal with such $O(1)$ corrections
 1. Effective Lagrangian for $M_{\text{SUSY}} \gg v, M_{A^0}, M_{H^0}, M_{H^+}$
 2. Calculation in the full MSSM beyond decoupling

- Why go beyond decoupling limit?
 - $M_{\text{SUSY}} \sim v$ is natural.
 - Test accuracy of calculations done with the effective Lagrangian approach.
 - Study $\tan\beta$-enhanced effects in couplings of SUSY-particles like $\tilde{g}, \tilde{\chi}^0$

 Impossible in the decoupling limit where these particles are integrated out!
Summary of large-\(\tan\beta\) effects

<table>
<thead>
<tr>
<th>effect</th>
<th>decoupling limit</th>
<th>beyond</th>
</tr>
</thead>
<tbody>
<tr>
<td>modified relation (y_{d_i} \leftrightarrow m_{d_i})</td>
<td>[Hall, Rattazzi, Sarid; Carena, Olechowski, Pokorski, Wagner]</td>
<td>[Carena, Garcia, Nierste, Wagner], 1</td>
</tr>
<tr>
<td>corrections to CKM matrix</td>
<td>[Blazek, Raby, Pokorski]</td>
<td>[Buras, Chankowski, Rosiek, Slawianowska], 2</td>
</tr>
<tr>
<td>enhanced FCNCs (d_i d_j H^0/A^0)</td>
<td>[Hamzaoui, Pospelov, Toharia; Babu, Kolda; Buras, Chankowski, Rosiek, Slawianowska]</td>
<td>[Buras, Chankowski, Rosiek, Slawianowska], 3</td>
</tr>
<tr>
<td>enhanced FCNCs (d_i \tilde{d}_j \tilde{g}/\tilde{\chi}^0)</td>
<td>not accessible</td>
<td>3</td>
</tr>
<tr>
<td>vertex corrections (\bar{u}{i,R} d{j,L} H^+)</td>
<td>[Degrassi, Gambino, Giudice; Carena, Garcia, Nierste, Wagner]</td>
<td>process-dependent (non-universal)</td>
</tr>
</tbody>
</table>

\[1 - 3 = \text{this talk}\]
Three new results

Beyond the decoupling limit:

1. Scheme dependence of the resummation formula for the Yukawa coupling
2. Resummation of flavour-changing self-energies
3. New effects in FCNC processes
Three new results

Beyond the decoupling limit:

1. Scheme dependence of the resummation formula for the Yukawa coupling

2. Resummation of flavour-changing self-energies

3. New effects in FCNC processes
Input schemes for bottom-squark mixing

- Bottom-squark mass matrix:
 \[M_b^2 = \begin{pmatrix} m_{bL}^2 & -y_b v_u \mu^* \\ -y_b v_u \mu & m_{bR}^2 \end{pmatrix} \]

- Mixing matrix:
 \[\tilde{R}_b M_b^2 \tilde{R}_b^\dagger = \text{diag}(m_{b1}^2, m_{b2}^2), \]

 \[\tilde{R}_b = \begin{pmatrix} \cos \tilde{\theta}_b & \sin \tilde{\theta}_b e^{i\tilde{\phi}_b} \\ -\sin \tilde{\theta}_b e^{-i\tilde{\phi}_b} & \cos \tilde{\theta}_b \end{pmatrix} \]
Input schemes for bottom-squark mixing

- Bottom-squark mass matrix: \[\mathcal{M}_{\tilde{b}}^2 = \begin{pmatrix} m_{\tilde{b}L}^2 & -y_b^* v_u \mu \\ -y_b v_u^* \mu & m_{\tilde{b}R}^2 \end{pmatrix} \]

- Mixing matrix: \[\tilde{R}_b \mathcal{M}_{\tilde{b}}^2 \tilde{R}_b^\dagger = \text{diag}(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2), \]
 \[\tilde{R}_b = \begin{pmatrix} \cos \tilde{\theta}_b & \sin \tilde{\theta}_b e^{i\tilde{\phi}_b} \\ -\sin \tilde{\theta}_b e^{-i\tilde{\phi}_b} & \cos \tilde{\theta}_b \end{pmatrix} \]

- What to choose as input? → different possibilities, e.g.
 - elements of \(\mathcal{M}_{\tilde{b}}^2 \): \(m_{\tilde{b}L}, m_{\tilde{b}R}, \mu, \tan \beta \)
 - mass eigenvalues and mixing angle: \(m_{\tilde{b}_1}, m_{\tilde{b}_2}, \tilde{\theta}_b, \tilde{\phi}_b \)
 - eigenvalues and off-diag. entries of \(\mathcal{M}_{\tilde{b}}^2 \): \(m_{\tilde{b}_1}, m_{\tilde{b}_2}, \mu, \tan \beta \)
Input schemes for bottom-squark mixing

- Bottom-squark mass matrix: \[M^2_{\tilde{b}} = \begin{pmatrix} m^2_{\tilde{b}_L} & -y_b v_u \mu \\ -y_b v_u \mu^* & m^2_{\tilde{b}_R} \end{pmatrix} \]

- Mixing matrix: \[\tilde{R}_b M^2_{\tilde{b}} \tilde{R}_b^\dagger = \text{diag}(m^2_{\tilde{b}_1}, m^2_{\tilde{b}_2}), \]
 \[\tilde{R}_b = \begin{pmatrix} \cos \tilde{\theta}_b & \sin \tilde{\theta}_b e^{i \tilde{\phi}_b} \\ -\sin \tilde{\theta}_b e^{-i \tilde{\phi}_b} & \cos \tilde{\theta}_b \end{pmatrix} \]

- What to choose as input? → different possibilities, e.g.
 - elements of \(M^2_{\tilde{b}} \): \(m_{\tilde{b}_L}, m_{\tilde{b}_R}, \mu, \tan \beta \)
 - mass eigenvalues and mixing angle: \(m_{\tilde{b}_1}, m_{\tilde{b}_2}, \tilde{\theta}_b, \tilde{\phi}_b \)
 - eigenvalues and off-diag. entries of \(M^2_{\tilde{b}} \): \(m_{\tilde{b}_1}, m_{\tilde{b}_2}, \mu, \tan \beta \)

- Note: \(\tilde{\theta}_b \) vanishes for \(v/M_{\text{SUSY}} \rightarrow 0 \)
 → No different input schemes in the decoupling limit.
Scheme dependence of the resummation formula

- Write \[\Sigma^R_L = m_b \Delta_b = m_b \epsilon_b \tan \beta \]

- Modified relation \(y_b \leftrightarrow m_b \) in the decoupling limit:

\[
y_b = \frac{m_b}{v_d (1 + \Delta_b)}
\]
Scheme dependence of the resummation formula

- Write \(\Sigma^{RL}_b = m_b \Delta_b = m_b \epsilon_b \tan \beta \)

- Modified relation \(y_b \leftrightarrow m_b \) in the decoupling limit:
 \[
y_b = \frac{m_b}{v_d (1 + \Delta_b)}
 \]

- Beyond decoupling: Formula depends on renormalization scheme (choice of input)!!!

- Example: Gluino-contribution \(\Sigma^{RL}_{b, \tilde{g}} = m_b \Delta_{\tilde{g}}_b \)

 (i) Input: \(m_{\tilde{b}_1}, m_{\tilde{b}_2}, \mu, \tan \beta \) \(\rightarrow \) \(y_b = \frac{m_b}{v_d (1 + \Delta_{\tilde{g}}_b)} \)

 (ii) Input: \(m_{\tilde{b}_1}, m_{\tilde{b}_2}, \tilde{\theta}_b, \tilde{\phi}_b \) \(\rightarrow \) \(y_b = \frac{m_b}{v_d} \left(1 - \Delta_{\tilde{g}}_b \right) \)

 (iii) Input: \(m_{\tilde{b}_L}, m_{\tilde{b}_R}, \mu, \tan \beta \)
 \(\rightarrow \) analytic resummation impossible, use (i) iteratively.
Three new results

Beyond the decoupling limit:

1. Scheme dependence of the resummation formula for the Yukawa coupling

2. Resummation of flavour-changing self-energies

3. New effects in FCNC processes
Naive MFV: Only chargino-loops are flavour-changing
Naive MFV: Only chargino-loops are flavour-changing

Consider flavour-changing self-energies in external quark-legs:

\[\Sigma_{bs}^{RL} \]

\[\Sigma_{bs}^{RL*} \]

New source of \(\tan \beta \)-enhancement:

\[\Sigma_{bs}^{RL} \propto \epsilon_{FC} m_b \tan \beta \quad \text{and} \quad \mathcal{M} \propto \frac{\Sigma_{bs}^{RL}}{m_b} \propto \epsilon_{FC} \tan \beta \]
Flavour-changing self-energies in external legs

- **Naive MFV:** Only chargino-loops are flavour-changing

- **Consider** flavour-changing self-energies in external quark-legs:

$$\Sigma_{RL}^{bs} \propto \epsilon F C m_b \tan \beta$$

- **New source of** $\tan \beta$-enhancement:

$$\Sigma_{RL}^{bs} \propto \epsilon F C m_b \tan \beta \quad \text{and} \quad M \propto \frac{\Sigma_{bs}^{RL}}{m_b} \propto \epsilon F C \tan \beta$$

- **Subtract** self-energies by non-diagonal wave-function CTs:

$$\delta Z_{bi}^L \propto \epsilon F C \tan \beta, \quad \delta Z_{bi}^R \propto \frac{m_i}{m_b} \epsilon F C \tan \beta \quad (i = d, s)$$

$$\rightarrow \delta Z_{L/R} \text{ contain the } \tan \beta \text{-enhanced effects!}$$
Resummed results

- $(\epsilon_{FC} \tan \beta)^n$-effects can be analytically resummed to all orders:

\[
\frac{\delta Z_{bi}^L}{2} = -V_{tb}^* V_{ti} \frac{\epsilon_{FC} \tan \beta}{1 + (\epsilon_b - \epsilon_{FC}) \tan \beta},
\]

\[
\frac{\delta Z_{bi}^R}{2} = -V_{tb}^* V_{ti} \frac{m_{d_i}}{m_b} \left[\frac{\epsilon_{FC} \tan \beta}{1 + \epsilon_b \tan \beta} + \frac{\epsilon_{FC}^* \tan \beta}{(1 + \epsilon_i^* \tan \beta)} \right] \frac{1 + \epsilon_b \tan \beta}{1 + (\epsilon_b - \epsilon_{FC}) \tan \beta}.
\]
Resummed results

- \((\epsilon_{FC} \tan \beta)^n\)-effects can be analytically resummed to all orders:

\[
\frac{\delta Z_{bi}^L}{2} = -V_{tb}^*V_{ti} \frac{\epsilon_{FC} \tan \beta}{1 + (\epsilon_b - \epsilon_{FC}) \tan \beta},
\]

\[
\frac{\delta Z_{bi}^R}{2} = -V_{tb}^*V_{ti} \frac{m_{di}}{m_b} \left[\frac{\epsilon_{FC} \tan \beta}{1 + \epsilon_b \tan \beta} + \frac{\epsilon_{FC}^* \tan \beta}{(1 + \epsilon_i^* \tan \beta)} \right] \frac{1 + \epsilon_b \tan \beta}{1 + (\epsilon_b - \epsilon_{FC}) \tan \beta}
\]

- results in corrections to the CKM matrix:

\[
V^0 = \begin{pmatrix}
V_{ud} & V_{us} & K^*V_{ub} \\
V_{cd} & V_{cs} & K^*V_{cb} \\
KV_{td} & KV_{ts} & V_{tb}
\end{pmatrix}, \quad K = \frac{1 + \epsilon_b \tan \beta}{1 + (\epsilon_b - \epsilon_{FC}) \tan \beta}
\]
Resummed results

- \((\epsilon_{FC}\tan\beta)^n\)-effects can be analytically resummed to all orders:

\[
\frac{\delta Z_{bi}^L}{2} = -V_{tb}^*V_{ti}\frac{\epsilon_{FC}\tan\beta}{1 + (\epsilon_b - \epsilon_{FC})\tan\beta},
\]

\[
\frac{\delta Z_{bi}^R}{2} = -V_{tb}^*V_{ti}\frac{m_{di}}{m_b}\left[\frac{\epsilon_{FC}\tan\beta}{1 + \epsilon_b\tan\beta} + \frac{\epsilon_{FC}^*\tan\beta}{(1 + \epsilon_i^*\tan\beta)}\right]\frac{1 + \epsilon_b\tan\beta}{1 + (\epsilon_b - \epsilon_{FC})\tan\beta}
\]

- These results

 - are of the same form as in the decoupling limit but with different \(\epsilon_b, \epsilon_{FC}\).
 - are the analytic expressions for the limit to which the iterative calculation of BCRS converges.
Three new results

Beyond the decoupling limit:

1. Scheme dependence of the resummation formula for the Yukawa coupling
2. Resummation of flavour-changing self-energies
3. New effects in FCNC processes
FCNC-couplings at large $\tan\beta$

- δZ^L_{ij} induce FCNC-couplings of order $\epsilon_{FC} \tan\beta$:

- $d_j \rightarrow d_i \rightarrow H^0, A^0$ known in the decoupling limit
- New: generalized to $M_{SUSY} \sim v$

- $\tilde{d}_j \rightarrow d_i \rightarrow \tilde{g}, \tilde{\chi}^0$ new! (not accessible in the decoupling limit)
FCNC-couplings at large $\tan\beta$

- δZ_{ij}^L induce FCNC-couplings of order $\epsilon_{FC} \tan\beta$:

 \[
 d_j \times H^0, A^0 \quad \text{known in the decoupling limit}
 \]

 new: generalized to $M_{SUSY} \sim v$

- $\delta Z_{bi} \propto \kappa V_{tb}^* V_{ti}$

 new! (not accessible in the decoupling limit)

- Coupling strength

 $\kappa \propto \frac{\epsilon_{FC} \tan\beta}{1 + (\epsilon_b - \epsilon_{FC}) \tan\beta}$

Estimate for equal SUSY-Masses:

- $|\kappa| \sim 0.08$, for $\mu > 0$
- (larger values for large A_t) $|\kappa| \sim 0.24$, for $\mu < 0$
Sizable effect in C_8

- Flavour-changing gluino-coupling enters $\mathcal{H}^{\Delta B=1}_{\text{eff}}$:
 - small effects in Wilson coefficients of four-quark operators and C_7.
 - large effect in C_8 possible
Sizable effect in C_8

- Flavour-changing gluino-coupling enters $\mathcal{H}_{\Delta B = 1}^{\text{eff}}$:
 - small effects in Wilson coefficients of four-quark operators and C_7.
 - large effect in C_8 possible

- Estimate for equal SUSY-masses:

 \[
 |C_8^{\tilde{g}}/C_8^{\tilde{\chi}^\pm}| \sim 0.42, \text{ for } \mu > 0; \quad |C_8^{\tilde{g}}/C_8^{\tilde{\chi}^\pm}| \sim 1.3, \text{ for } \mu < 0
 \]
Mixing-induced CP asymmetry in $B^0 \rightarrow \phi K_S$

$S_{\phi K_S}$ in naive factorization, including $\tan \beta$-enhanced corrections to C_8:

Here a rather large value $\mu = 800 \text{ GeV}$ is used, parameter point is compatible with $\mathcal{B}(\bar{B} \rightarrow X_s \gamma)$.

[Graph showing the variation of $S_{\phi K_S}$ with $|A_t|$ (GeV) for SM, SM + chargino, and SM + chargino + gluino scenarios.]

| $|A_t|$ (GeV) | 400 | 600 | 800 | 1000 | 1200 |
|-------------|-----|-----|-----|------|------|
| $S_{\phi K_S}$ | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 |
Conclusions

- Effects of $\tan \beta$-enhanced self-energies can be resummed analytically beyond the decoupling limit, also in the flavour-non-diagonal case.

- The resummation formula for the Yukawa coupling depends on the renormalization scheme.

- Not only H^0, A^0 but also \tilde{g}, $\tilde{\chi}^0$ develop flavour-changing couplings at large $\tan \beta$.

- These couplings lead to a sizable modification of C_8.
Backup slides
Backup: Parameter points

Scan ranges for C_8: $\tan \beta = 40 - 60$, any value for φ_{A_t},

<table>
<thead>
<tr>
<th>Parameter</th>
<th>min (GeV)</th>
<th>max (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{m}{Q_L}, \tilde{m}{u_R}, \tilde{m}_{d_R}$</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>$</td>
<td>A_t</td>
<td>$</td>
</tr>
<tr>
<td>μ, M_1, M_2</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>M_3</td>
<td>300</td>
<td>1000</td>
</tr>
<tr>
<td>m_{H^+}</td>
<td>200</td>
<td>1000</td>
</tr>
</tbody>
</table>

Parameter point used for $S_{\phi K_S}$:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{m}{Q_L}, \tilde{m}{u_R}, \tilde{m}_{d_R}$</td>
<td>600 GeV</td>
</tr>
<tr>
<td>μ</td>
<td>800 GeV</td>
</tr>
<tr>
<td>M_1</td>
<td>300 GeV</td>
</tr>
<tr>
<td>M_3</td>
<td>500 GeV</td>
</tr>
<tr>
<td>$\tan \beta$</td>
<td>50</td>
</tr>
<tr>
<td>m_{A^0}</td>
<td>350 GeV</td>
</tr>
<tr>
<td>M_2</td>
<td>400 GeV</td>
</tr>
<tr>
<td>φ_{A_t}</td>
<td>$3\pi/2$</td>
</tr>
</tbody>
</table>
The Wilson coefficients C_7 and C_8

$C_{7,8}[1] = C_{7,8}^{\tilde{\chi}^\pm} + C_{7,8}^{H^+}$, \hspace{1cm} $C_{7,8}[2] = C_{7,8}^{\tilde{\chi}^\pm} + C_{7,8}^{H^+} + C_{7,8}^{\tilde{g}}$

Scan over relevant SUSY parameter space with

$(\mu, M_1, M_2, m_{\tilde{g}}, M_{H^+}, m_{\tilde{t},LL}, m_{\tilde{t},RR}, m_{\tilde{b},LL}, m_{\tilde{b},RR}) \leq 1\text{TeV}$,

$|A_t| \leq 3\text{TeV}$, \hspace{0.5cm} $0 \leq \phi_{A_t} \leq 2\pi$, \hspace{0.5cm} $\tan \beta = 50$
Some couplings of H^+ and h^0 are suppressed by $\cos \beta$ at tree-level.

They obtain enhanced vertex corrections $\sim \sin \beta$, e.g.

This effect is local only in the decoupling limit, but cannot be cast into a Feynman rule in the full calculation.
Integrate out all particles with masses $M_{\text{SUSY}} \gg v$, keep only SM particles and Higgs fields

Example:

\[\mathcal{L}^{\text{eff}}_{d,y} = -y_d \bar{d}_i Q_i H_d - \tilde{y}_d \bar{d}_i Q_i H_u \]

Consequence: Modified relation between y_d and m_{d_i}

\[m_{d_i} = y_d v_d + \tilde{y}_d v_u \quad \Rightarrow \quad y_d = \frac{m_{d_i}}{v_d (1 + \epsilon_i \tan \beta)} \]

contains contributions of the form $(\epsilon \tan \beta)^n$ to all orders \rightarrow \text{resummation?}
Subtract $\tan \beta$-enhanced corrections to all orders by appropriate finite counterterms.

Example:

$$\Sigma_{b,\tilde{\chi}^\pm}^{RL}(y_b) = y_b v_d \Delta_{b}^{\tilde{\chi}^\pm}, \quad \Delta_{b}^{\tilde{\chi}^\pm} = \epsilon_b^{\tilde{\chi}^\pm} \tan \beta$$

1 loop

$$\nu_d \delta y_b^{(1)}$$

$$b_L \times b_R$$

$$\delta y_b^{(1)} = -\Delta_{b}^{\tilde{\chi}^\pm} y_b$$

$$= -\Delta_{b}^{\tilde{\chi}^\pm} \frac{m_b}{v_d}$$
Backup: Resummation beyond decoupling

- Subtract $\tan \beta$-enhanced corrections to all orders by appropriate finite counterterms

Example:

\[
\sum_{b,\tilde{\chi}^\pm}^{RL} (y_b) = y_b v_d \Delta_b \tilde{\chi}^\pm, \quad \Delta_b \tilde{\chi}^\pm = \epsilon_b \tilde{\chi}^\pm \tan \beta
\]

2 loops

\[
v_d \delta y_b^{(2)}
\]

\[
\begin{align*}
\sum_{b,\tilde{\chi}^\pm}^{RL} (y_b) &= y_b v_d \Delta_b \tilde{\chi}^\pm, \\
\Delta_b \tilde{\chi}^\pm &= \epsilon_b \tilde{\chi}^\pm \tan \beta
\end{align*}
\]
Subtract $\tan \beta$-enhanced corrections to all orders by appropriate finite counterterms

Example:

$$\sum_{b, \tilde{\chi}^\pm}^{RL} (y_b) = y_b v_d \Delta_{b} \tilde{\chi}^\pm, \quad \Delta_{b} \tilde{\chi}^\pm = \epsilon_b \tan \beta$$

n loops

$$v_d \delta y_b^{(n)}_{b_L \times b_R} = - \delta y_b^{(n-1)}_{b_L \times b_R} \Delta_{b} \tilde{\chi}^\pm \delta y_b^{(n-1)}_{b_L \times b_R} = (-\Delta_{b} \tilde{\chi}^\pm)^n \frac{m_b}{v_d}$$
Backup: Resummation beyond decoupling

- Subtract $\tan \beta$-enhanced corrections to all orders by appropriate finite counterterms

Example:

$$\sum_{b, \tilde{\chi}^\pm}^{RL}(y_b) = y_b v_d \Delta_{b} \tilde{\chi}^\pm,$$

$$\Delta_{b} \tilde{\chi}^\pm = \epsilon_b \tan \beta$$

n loops

$$v_d \delta y_b^{(n)}_{b_L} b_L b_R = - t_{1,2} \delta y_b^{(n-1)}_{b_L} b_L b_R \tilde{\chi}_{1,2} \delta y_b^{(n)}_{b_R} = - \Delta_{b} \delta y_b^{(n-1)}_{b_R} = (- \Delta_{b} \tilde{\chi}^\pm)^n m_b v_d$$

$$y_b^0 = \frac{m_b}{v_d} \left(1 - \Delta_{b} \tilde{\chi}^\pm + \Delta_{b} \tilde{\chi}^\pm^2 - \ldots \right) = \frac{m_b}{v_d(1 + \Delta_{b} \tilde{\chi}^\pm)}$$
Backup: Resummation beyond decoupling

- Subtract $\tan \beta$-enhanced corrections to all orders by appropriate finite counterterms

Example:

$$\Sigma_{b,\tilde{\chi}^\pm}^{RL}(y_b) = y_b v_d \Delta_b^{\tilde{\chi}^\pm}, \quad \Delta_b^{\tilde{\chi}^\pm} = \epsilon_b^{\tilde{\chi}^\pm} \tan \beta$$

n loops

$$v_d \delta y_b^{(n)}_{b_L} \times_{b_R} = - \Delta_b^{\tilde{\chi}^\pm} \delta y_b^{(n-1)} = (\Delta_b^{\tilde{\chi}^\pm})^n m_b \frac{m_b}{v_d}$$

$$y_b^0 = \frac{m_b}{v_d} \left(1 - \Delta_b^{\tilde{\chi}^\pm} + \Delta_b^{\tilde{\chi}^\pm} - ... \right) = \frac{m_b}{v_d(1 + \Delta_b^{\tilde{\chi}^\pm})}$$

- Explicit resummation of contributions of the form $\Delta_b = \epsilon_b \tan \beta$
Backup: Resummation of δZ_{ij}^L

- Subtract external leg contributions by matrix-valued wave function renormalization:

\[
\frac{m_b}{2} \delta Z_{bi}^L = - \frac{\Sigma_{bi}^{RL} (\delta Z)}{m_b},
\]

\[
\delta Z_{bi}^L = \mathcal{O} (\epsilon_{FC} \tan \beta)
\]

- Resum δZ_{ij}^L-insertions:

\[
\frac{\delta Z_{bi}^L}{2} = - \frac{\Sigma_{bi}^{RL} (\delta Z)}{m_b}
\]

- Result:

\[
\frac{\delta Z_{bi}^L}{2} = - V_{ti} V_{tb}^* \frac{\epsilon_{FC} \tan \beta}{1 + (\epsilon_b - \epsilon_{FC}) \tan \beta}
\]