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Introduction

Picture: ATLAS simulation

The LHC is almost running and we will have to deal with the data soon.
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Introduction

H

1. Incoming hadron                   (gray bubbles)

➮ Parton distribution function

2. Hard part of the process    (yellow bubble)
➮ Matrix element calculation, cross 
sections at LO, NLO, NNLO level

3. Radiations                                (red graphs)
➮ Parton shower calculation
➮ Matching to the hard part

4. Underlying event                        (blue graphs)
➮ Models based on multiple 
interaction

5. Hardonization                     (green bubbles)
➮ Universal models 

The structure of the Monte Carlo event generators



Introduction

New Physics = Data (experimental) - Background (theory)

Master equation for LHC discovery: 

Experiment

- Collecting raw data
- Detector corrections
- Converting to hadron level
- Converting to parton level

Theory

- Calculate at least at NLO 
level (if it is available)

- Resum the large 
logarithms and match it to 
NLO (if it is available) 

MC event 
generators

Data (no new physics) = [Hard part ⊗ Shower + MPI ⊗ Shower] ⊗ Hadronization

Master equation of the Monte Carlo program:

Well defined Needs some work Only model



Iterative Algorithm
The parton shower evolution starts from the simplest hard configuration, that is usually 
2→2 like.

“Nothing happens”

“Something  happens”

U(tf , t2)
∣∣M2

)
= N (tf , t2)

∣∣M2

)
︸ ︷︷ ︸

+

︷ ︸︸ ︷∫ tf

t2

dt3 U(tf , t3)H(t3)N (t3, t2)
∣∣M2

)

Resolution scale: 400 GeV
Decreasing the resolution scale, 
more and more partons are 
visible and less absorbed by the 
incoming hadrons and the final 
state jets. 

This intuitive picture is usually 
called Wilsonian renormalisation 
technique in theoretical physics.
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Resolution scale: 250 GeV
Decreasing the resolution scale, 
more and more partons are 
visible and less absorbed by the 
incoming hadrons and the final 
state jets. 

This intuitive picture is usually 
called Wilsonian renormalisation 
technique in theoretical physics.
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Iterative Algorithm
The parton shower evolution starts from the simplest hard configuration, that is usually 
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Resolution scale: 150 GeV
Decreasing the resolution scale, 
more and more partons are 
visible and less absorbed by the 
incoming hadrons and the final 
state jets. 

This intuitive picture is usually 
called Wilsonian renormalisation 
technique in theoretical physics.
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Resolution scale: 100 GeV



Iterative Algorithm
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This intuitive picture is usually 
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technique in theoretical physics.

Resolution scale: 100 GeV

= +

M
(2
→

2)

U
(t

2
,t

f)

U
(t

3
,t

f)

N
(t

2
,t

f)

N
(t

2
,t

3
)

t2 t2 t2 t3 tftftf

M
(2
→

2)

M
(2
→

2)

. .
 . 

.. . . .



Statistical space
In QCD a m-patron system is described by the density operator

ρ({p, f}m) =
∣∣M({p, f}m)

〉〈
M({p, f}m)

∣∣

=
∑

s,c,s′,c′

∣∣{s′, c′}m

〉(
{p, f, s′, c′, s, c}m

∣∣ρ
)〈
{s, c}m

∣∣

∣∣ρ
)

=
∑

m

1
m!

∫ [
d{p, f, s′, c′, s, c}m

] ∣∣{p, f, s′, c′, s, c}m

) (
{p, f, s′, c′, s, c}m

∣∣ρ
)

In the statistical space it 
is represented by a vector

∣∣F
)

=
∑

m

1
m!

∫ [
d{p, f, s′, c′, s, c}m

] ∣∣{p, f, s′, c′, s, c}m

)
F ({p, f}m)

Measurement operators can be also represented by vectors in the statistical space

∣∣1
)
⇔ F ({p, f}m) = 1E.g.: Total cross section

∣∣p⊥
)
⇔ F ({p, f}m) = δ(p⊥ − p⊥,Z)

Transverse momentum 
in Drell-Yan:



QCD vs. MC
SHOWER CROSS SECTION

- It is an all order but approximated 
calculation

- Based on soft and collinear 
factorization of the amplitudes

- Usually more approximation 
considered (e.g: large Nc,...)

- Implemented in general purpose 
MC programs (HERWIG, PHYTIA,...)

- Sums up large logarithms

σS [F ] =
(
F

∣∣ρ
)

QCD CROSS SECTION

σQCD[F ]

- It is an all order but approximated 
calculation

- Based on soft and collinear 
factorization of the amplitudes

- Precise in color

- Case-by-case rather elaborate 
calculation 

- Sums up large logarithms, correctly

Let us compare them!
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Herwig has been tested for

‣ e+e-: thrust, C-parameter, Durham jet rates, 
jet mass distribution, ...

‣ DIS, DY: large x



QCD vs. Parton Shower
Recent paper by Marchesini  and Dokshitzer indicates that the color dipole based showers are 
not consistent with the parton evolution picture. They studied the quark energy distribution.
This has been checked both analytically and  numerically and the shower is consistent with the DGALP 
equation.

Z.N, D.E. Soper: JHEP 0905:088,2009; 

P. Skands, S. Weinzierl: arXiv:0903:2150

d

dt
Dq(t, t′, x) =

∫ 1

x

dz

z
Pqq(z)Dq(t, t′, x/z) +O(e−t)

No approximation and assumptions. 
Only algebraic manipulations.

From shower equation 

to DGLAP

d

dt

(
x, q

∣∣U(t, t′)
∣∣M2

)
=

(
x, q

∣∣[HI(t)− V(t)]U(t, t′)
∣∣M2

)



Drell-Yan pT distribution
Building a shower based on the Catani-Seymour splitting functions and mappings can 
lead to the loss of accuracy. 

This is effectively an approximated NLO calculation with summation of the virtual 
emissions. No resummation of the large logarithms correctly. We got wrong equation 
because of the choice of the momentum mapping. 

The correct equation is 

We have to study analytically and test against known QCD results.

(
p⊥

∣∣U(t, 0)
∣∣M2

)
=

(
p⊥

∣∣N (t, 0)
∣∣M2

)
+

∫ t

0
dτ

(
p⊥

∣∣H(τ)N (τ, 0)
∣∣M2

)

(
p⊥

∣∣U(t, 0)
∣∣M2

)
=

(
p⊥

∣∣N (t, 0)
∣∣M2

)
+

∫ t

0
dτ

(
p⊥

∣∣U(t, τ)H(τ)N (τ, 0)
∣∣M2

)



QCD: Drell-Yan pT distribution
The NLL expression of the pT distribution was obtained using the renormalization group 
technique and the result is  

where

A(αs) = 2 CF
αs

2π
+ 2 CF

{
CA

[
67
18
− π2

6

]
− 5 nf

9

} ( αs

2π

)2
+ · · · ,

B(αs) = −4
αs

2π
+

[
−197

3
+

34nf

9
+

20π2

3
− 8nfπ2

27
+

8ζ(3)
3

]( αs

2π

)2
+ · · · ,

Ca′a(z, αs) = δa′aδ(1− z) +
αs

2π

[
δa′a

{
4
3

(1− z) +
2
3

δ(1− z)
(
π2 − 8

)}
+ δag z(1− z)

]

xA =

√
M2

s
eY

xB =

√
M2

s
e−Y

dσ

dp⊥dY
≈

∫
d2b

(2π)2
eib·p⊥

×
∑

a,b

∫ 1

xa

dηa

ηa

∫ 1

xb

dηb

ηb
fa/A

(
ηa, C

2/b2
)

fb/B

(
ηb, C2/b2

)

× exp

(
−

∫ M2

C2/b2

dk2
⊥

k2
⊥

[
A(αs(k2

⊥)) log
(

M2

k2
⊥

)
+ B(αs(k2

⊥))
])

×
∑

a′,b′

H(0)
a′b′ Ca′a

(
xa

ηa
, αs

(
C2

b2

))
Cb′b

(
xb

ηb
, αs

(
C2

b2

))
.

C = 2e−γE



MC: Drell-Yan process
The result and the derivation strongly depends on the shower algorithm, so it is useful to 
stick at one. My choice an shower algorithm with quantum interference.

Z.N, D.E. Soper: JHEP 0709:114,2007; JHEP 0803:030,2008; JHEP 0807:025,2008

Now, the shower equation is

d

dt

(
p̂, Y

∣∣ρ(t)
)

=
(
p̂, Y

∣∣HI(t)− V(t)
∣∣ρ(t)

)

• Fully exclusive and systematical formulation of the parton shower

• Quantum interferences are considered properly 

• Color evolution

• Spin correlations

• Full control over the kinematics

• Mapping based on exact phase space factorization

• Ordering in virtuality (this is the most natural ordering variable)



MC: Drell-Yan process
Now, the shower equation is

d

dt

(
p̂, Y

∣∣ρ(t)
)

=
(
p̂, Y

∣∣HI(t)− V(t)
∣∣ρ(t)

)

After some harmless approximations, algebraic manipulations and about 2 months of hard 
work the result is  

With the support of the standard DGLAP equation for the PDFs:

dσ

dp⊥ dY
=

∫
db

(2π)2
eip⊥·b exp

{
−CF

∫ M2

C2/b2

dk2

k2

αs(λk2)
π

[
log

M2

k2
− 3

2

]}

×
∑

a,b

H(0)
a,b fa/A

(
xA,

C2

b2

)
fb/B

(
xA,

C2

b2

)

µ2
F

d

dµ2
F

fa/A

(
x, µ2

F

)
=

∑

â

∫ 1

0

dz

z

αs(µ2
F)

2π
Pâ,a(z) fâ/A

(
x/z, µ2

F

)



MC: Drell-Yan process
The result is strongly depends on the choice of the argument of the αs in the shower:

Using scaled transverse momentum for the argument of strong coupling with 

αs(λk2
⊥)

2π
=

αs(k2
⊥)

2π
− 2β1log(λ)

(
αs(k2

⊥)
2π

)2

+O(α3
s )

λ = exp

(
−

CA

[
67− 3π2

]
− 15nf

3 (33− 2 nf)

)

we can reproduce the QCD cross section at NLL level

AMC(αs) = 2CF
αs

2π
+ 2 CF

{
CA

[
67
18
− π2

6

]
− 5 nf

9

} ( αs

2π

)2
+ · · · ,

BMC(αs) = −4
αs

2π
+ · · · ,

CMC
a′a (z, αs) = δa′aδ(1− z) + · · ·



Modified LO PDF
Do we need modified PDF? No, we don’t.

In the derivation we used only that the PDF obeys the following equation (at LO level):

d

dt
fa/A(ηa, M

2e−t) = −
∫ 1

0
dz

∑

f ′

αs

(
λk2
⊥

)

2π

{
1
z

Pa,a+f ′(z) f(a+f ′)/A(ηa/z, M2e−t)

− δf ′,g

[
2Ca

1− z
− γa

]
fa/A(ηa, M

2e−t)
}

+O(α2
s)

Every PDF (LO, NLO, NNLO) satisfies this equation at this level of precision.

• Don’t use LO* and LO** PDFs. They are not physical.
• To improve parton shower performance there are better ways to do.

• Color evolution, spin correlations,...., quantum interference 
• Higher order corrections  
• ....



Other choices
✗ The shower based on Catani-Seymour factorization fails to reproduce the analytic 

answer. The shower result doesn’t exponentiate in b-space. Bad choice of the momentum 
mapping.

✗ What happens when we don’t change anything (splitting function, mapping, 
correct interference terms, ...), but we use the transverse momentum as evolution 
variable (like in PHYTIA,...).
➡ The result is correct at LL level but very like that it fails at NLL level. Lack of 

angular ordering.

✓ What happens when we don’t change anything (splitting function, mapping, 
correct interference terms, ...), but we use the emission angle as evolution variable (like 
in HERWIG,...).
➡ This gives the right answer at NLL level

Here we studied algorithms those are more advanced than HERWIG or PHYTHIA, we  changed only 
the evolution parameter to mimic the main features of the standard MC programs, but they differ 
basically in everything. 



Summary
‣ It is important to test parton shower against resummed QCD calculation.

‣ This can help us to treat it more systematically.

✓ Our parton shower can sum up the pT logs at NLL level

✗ Unfortunately this algorithm hasn’t been implemented,yet.

✗ Don’t use modified LO PDFs (LO* & LO**) and don’t produce such creatures!

‣ Need more work on testing parton showers systematically against known 
QCD results.

‣ Need more work on color evolution, spin correlations, non-global effect, 
higher order corrections, ...., more theory work required. 

‣ In principle shower has a chance to sum up all the LL and the LO NLL 
contributions.

‣ Shower is only an “exponentiated LO” (one can call it to eLO) calculation. 

“has a chance to” ≠ “does”


