

Search for Single Top Quark Production at HERA

L. Bellagamba INFN

On behalf of the H1 and ZEUS collaborations HEP 2009, 16-22 July, Krakow, Poland

HERA performances

e 27.5 GeV p 920 GeV
$$\sqrt{s} = 318 \text{ GeV}$$

HERA running up to June 2007

Total integrated luminosity:

HERA I:

 $e+p \sim 100 \text{ pb}^{-1}$

 $e-p \sim 15 \text{ pb}^{-1}$

HERA II:

 $e+p \sim 200 \text{ pb}^{-1}$

 $e-p \sim 200 pb^{-1}$

Results presented in this talk:

H1 474 pb⁻¹, full e±p data sample, published DESY-09-050

ZEUS: 277 pb-1 (HERA II prel.)

+ 120 pb⁻¹ (HERA I PLB 559 (2003) 153)

Single top production at HERA

SM top production at HERA negligible, σ < 1fb

BSM effects could enhance the cross section via FCNC effective couplings:

$$\mathcal{L}=rac{ee_{u}}{\Lambda}ar{t}\sigma_{\mu
u}q^{
u}\kappa_{\gamma}u\mathcal{A}^{\mu}$$

Clear topology in the leptonic channel: high pt leptons, large missing pt also the hadronic channel can be exploited

In SM such events predominantly due to W production (σ ~1pb)

HERA experiments sensitive to anomalous coupling involving uquark and γ exchange

H1 - Analysis

Published: DESY-09-050

- Full data sample used, 474 pb⁻¹
- Exploited electron, muon and hadron channels
- Multivariate discriminant technique based on a neural network used to discriminate top production from SM background

H1 - Leptonic channel

- Selection based on the isolated lepton analysis arXiv:0901.0488d
- Leptons isolated from jets and other tracks in the event

$$\begin{array}{l} P_{T,miss} > 12~\text{GeV} \\ p_{T,lep} > 10~\text{GeV} \\ 0.1 < \theta_{lep} < 2.4~\text{rad} \end{array}$$

Data in overall agreement with the SM predictions Slight excess of data in the signal region

H1 - Hadronic channel

· At least 3 jets in $-0.5 < \eta < 2.5$

• Jets ordered in P_{T} :

 $P_{T,1} > 40 \text{ GeV}$ $P_{T,2} > 30 \text{ GeV}$

P_{T 3} > 15 GeV

· Cut on the scalar sum of jet P_T ∑ P_{T,iet} >110 GeV

Data in overall good agreement with the SM predictions

H1 - Results

No significant excess

> set limits on single top production

H1 Search for Single Top Production $e^{\pm}p$, 474pb $^{-1}$

	Upper Limit at 95% CL						
Channel	σ (ep $ ightarrow$ tX, $$	$\sqrt{s} = 319 \ GeV)$	$\kappa_{tu\gamma}$	$\mathcal{B}(t o u\gamma)$			
	Observed[pb]	Expected[pb]	·	[%]			
Electron	0.40	0.24	0.21 - 0.23	0.82 - 1.02			
Muon	0.30	0.22	0.18 - 0.20	0.61 - 0.76			
Electron+Muon	0.27	0.15	0.17 - 0.19	0.55 - 0.69			
Hadronic	0.42	0.27	0.21 - 0.24	0.86 - 1.07			
Combined	0.25	0.12	0.16 - 0.18	0.51 - <mark>0.64</mark>			

- · Slight excess of events compatible with signal
 - limits larger than expected from a toy model assuming a pure SM scenario
- NLO corrections to single top production accounted for
- \cdot Coupling and Br limits range due to M_{top} uncertainties (170-175 GeV)

ZEUS - Analysis

Preliminary results:

277 pb-1 of data collected in 2005-2007

Muon channel preselection:

P_{T,miss} > 10 GeV

Muon candidate:

 p_T >8 GeV, isolated from other tracks and jets

Electron channel preselection:

 $5 < E-P_Z < 50 GeV$ $P_{T.miss} > 12 GeV$

Electron candidate:

 p_{T} > 10 GeV, isolated from other tracks and jet Acoplanarity > 0.1 rad

ZEUS - Muon channel

- Overall reasonable agreement between data and SM expectations
- Dominantbackground QEDdi-muon production
- \cdot SM W production visible at large acoplanarity and M_{T}
- No significant excess at large hadronic P_T , where single top signal is expected

ZEUS - Electron channel

- Overall good agreement between data and SM expectations
- Dominantbackground NeutralCurrent DIS
- SM W production visible at large acoplanarity, M_T and $P_{T.miss}$
- No significant excess at large hadronic P_T , where single top signal is expected

ZEUS - Final selection

Muon channel:

Acoplanarity > 0.05 rad Event rejected if more than one muon

Electron channel:

Acoplanarity > 0.15 rad P_{T,miss} > 15 GeV

Both channels:

P_{T,had} > 40 GeV

Good agreement
between data and MC
No excess at high
P_{T had}

ZEUS - Results

Final Selection

	N_{obs}	N_{pred}	W[%]	Eff. \times Br.
Muon Channel 04-05 e ⁻ p	1	$1.5 {\pm} 0.4$	47	0.026
Muon Channel 06-07 $e^+ ho$	1	1.4 ± 0.4	50	0.026
Electron Channel 04-05 e ⁻ p	0	2.1 ± 0.6	38	0.033
Electron Channel 06-07 e^+p	0	$0.9\ \pm0.3$	78	0.033

Results of the selection converted in limits on signal cross section using a Bayesian approach and assuming a constant prior on the signal cross section:

$$\sigma$$
 < 0.23 pb (95% C.L.)

corresponding to a limit on the coupling k_{tuy} :

$$k_{tuy} < 0.17 (0.16-0.18), M_{top} = 171.2 \pm 2.1 GeV$$

This result has been combined with the HERA I limit (using only the samples at $\sqrt{s}=318$ GeV) for a total int. luminosity of 359 pb⁻¹:

$$\sigma$$
 < 0.13 pb, k_{tuy} < 0.13 \Longrightarrow Br(t \rightarrow u γ) < 0.34%

Comparison with other colliders

Conclusions

- Both HERA experiments H1 and ZEUS have produced competitive constraints studying single top production mediated by FCNC couplings
- · Due to its peculiar initial state HERA is largely complementary with respect to other colliders:

LEP and Tevatron better constrain processes involving c-top transitions or mediated by Z-exchange

On the other hand HERA limits are the best to date for u-top transitions and γ -exchange

Selected events

Selected events

