Searches for New Physics in the Top Quark Sector

Prof. Robin Erbacher University of California, Davis

European Physical Society Meeting Krakow, Poland – July 2009

Top Discovery! Tevatron Run 1 1994-5

Many top properties measurements are beginning to have sensitivity: lots about top still to understand!

Top as a Window to New Physics...

Top can reveal physics beyond the Standard Model in various ways:

- Top results point to new physics: Properties lead to expectations of partners or other new particles.
- Top is Not what we expect: Measured top properties are anomalous, contrary to SM.
- Top is Not all that we find:

New physics mimics top signatures.

Top as a Window to New Physics...

Top can reveal physics beyond the Standard Model in various ways:

- Top results point to new physics: Properties lead to expectations of partners or other new particles.
- Top is Not what we expect: Measured top properties are anomalous, contrary to SM.
- Top is Not all that we find:

New physics mimics top signatures.

Top as Indicator of Where New Physics Lies

<u>Top Measurements Point</u>
<u>to New Particles</u>
• Top Mass
• EWK production: single top
• New resonance production
• Top decaying to charged higgs

Bump-hunting for X→ttbar!

(Narrow resonance $\Gamma_X = 0.012M_X$)

- First measurement in the all-hadronic channel
- Good agreement with SM
- Set Z' limit at 805 GeV

Top as a Window to New Physics...

Top can reveal physics beyond the Standard Model in various ways:

- Top results point to new physics: Properties lead to expectations of partners or other new particles.
- Top is Not what we expect: Measured top properties are anomalous, contrary to SM.
- Top is Not all that we find:

New physics mimics top signatures.

Anomalies in Top Properties

Top Properties non SM-like
Top Pair Cross Section
Forward-Backward Asymmetry
Top Quark Charge
W helicity (V-A)
FCNC

Diagram interferences for qq

Forward-Backward Production Asymmetry A_{fb}

Kuhn, Rodrigo et al., PRL 2008

- No asymmetry expected at LO, but
 4-6% expected at NLO in parton frame
- Reduced Asymmetry in tt+jet -- Uwer, et al.

Forward-Backward Production Asymmetry A_{fb}

- Great test of the Standard Model
- Test of discrete symmetries of the strong interaction at high energies
- Challenging at LHC since gg
 fusion dominates
- Look for signs of new production mechanisms: massive gluons, Z'...

Several possible reconstruction methods:

• Measure the production angle of the + charged top, regardless of decay.

 Assume CP in strong interactions, and measure the angles for either:

– leptonic side: Q_{lepton} •y_{lep}

-hadronic side: -Q_{lepton} •y_{had}

A_{fb}: Reconstructing the Production Angle

1.5 x better resolution

Latest A_{fb} Result from CDF

R. Erbacher-Krakow

Uncorrected Distribution

Latest A_{fb} Result from CDF

- Rebin: 4 bins optimized to minimize bias in underlying shape
- Subtract backgrounds, correct for reconstruction and acceptance
- Extract A_{fb}

$$A_{fb} = (19 \pm 7(stat) \pm 2(syst)) \%$$
 (Fully corrected)

Compare NLO theory: (5 ±1%) for Q*y Kuhn, Rodrigo PRL '98 Frixione, Webber MC@NLO

R. Erbacher-Krakow

New Study: Explore A_{fb}versus M_{tt}

Investigate Mass

New Study: Explore A_{fb}versus M_{tt}

No significant mass dependence found so far.

Full study results

http://www-cdf.fnal.gov/physics/new/top/2009/tprop/AfbMtt/

22

New Study: Explore A_{fb}versus M_{tt}

Pythia with 10% Z' at 450 GeV

Integral A_{fb} below M_{tt} cut

Integral A_{fb} above M_{tt} cut

Full study results

http://www-cdf.fnal.gov/physics/new/top/2009/tprop/AfbMtt/

Top as a Window to New Physics...

Top can reveal physics beyond the Standard Model in various ways:

- Top results point to new physics: Properties lead to expectations of partners or other new particles.
- Top is Not what we expect: Measured top properties are anomalous, contrary to SM.
- Top is Not all that we find:

New physics mimics top signatures.

If we assume:

- 1. $\tilde{\chi}_1^0$ is the LSP
- 2. $m_{\tilde{t}_1} \lesssim m_t$
- 3. $m_{\tilde{\chi}_1^+} < m_{\tilde{t}_1} m_b$

Then stop pairs can look like top pairs!

$$\tilde{t}_1 \to b \tilde{\chi}_1^{\pm} \to b \tilde{\chi}_1^0 l \nu$$

R. Erbacher-Krakow

Can light SUSY *stop* hide alongside Top dileptons?

- M(stop)<M(top) in SUSY electroweak baryogenesis models.
- Look for a light stop that mimics top dilepton signatures:

$$\begin{split} \tilde{\chi}_{1}^{\pm} & \text{decays to } \tilde{\chi}_{1}^{0} + \ell + \nu \text{ via} \\ \tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\chi}_{1}^{0} + W^{\pm(*)} \rightarrow \tilde{\chi}_{1}^{0} + \ell + \nu \\ \tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\chi}_{1}^{0} + H^{\pm} \rightarrow \tilde{\chi}_{1}^{0} + \ell + \nu, \\ \tilde{\chi}_{1}^{\pm} \rightarrow \ell + \tilde{\nu}_{\ell} \rightarrow \tilde{\chi}_{1}^{0} + \ell + \nu, \\ \tilde{\chi}_{1}^{\pm} \rightarrow \nu + \tilde{\ell}_{L} \rightarrow \tilde{\chi}_{1}^{0} + \ell + \nu, \\ \tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\chi}_{1}^{0} + G^{\pm(*)} \rightarrow \tilde{\chi}_{1}^{0} + \ell + \nu. \end{split}$$

26

Reconstruction difficult due to many invisible particles.

120

130

140

Example for a particular choice of stop, chargino, and neutralino masses

CDF: No evidence for stop (Limits in $M(\chi^o)$ - M(stop) plane)

150

m(t̃,) GeV/c²

160

Excluded by LEP

180

170

First limits on a light

Massive or 4th Generation Top: t'

•While on the energy frontier, we look for interesting events on the tails of the top quark distributions

•Can a t' exist? Can it mimic top?

•Generic 4th chiral generation is consistent with EWK data; can accommodate a heavy Higgs (500 GeV) without any other new physics

- Several SUSY models provide for a 4th generation t' or mimic top-like signatures (Beautiful Mirrors: Choudhury, Tait, Wagner)
- Little Higgs models predict a heavy t' -like particle

Massive or 4th Generation Top: t'

Update in progress this summer...

QCD

[].

R. Erbacher-Krakow

M_{reco} (GeV)

• Search: 4th generation down-type quark, as well as heavy B,T_{5/3}

- Signature: Distinctive same-sign leptons, MET, b-tags, many jets
- Results: Expect 1.9 events, Observe 2 events

R. Erbacher-Krakow

M(b') > 325 GeV M(B,T_{5/3}) > 351 GeV

32

Summary

•The top quark is the least known quark, and the most interesting for new physics.

•The top physics program is very active at the Tevatron, with both precision measurements and first properties and search results appearing all the time.

• Beginning to have sensitivity to the unexpected in particle properties and in the data samples!

Tevatron luminosity profile

Conclusions

Some Previous CDF Results...

New Color Octet Particle G:

Limits on coupling $\lambda = \lambda_q \lambda_G$:

Fitted coupling strength consistent with SM within 1.7σ in the (width/ mass) range from 0.05 to 0.5

A_{fb} Result from CDF

NLO: (4 \pm 1%) in cos θ^* (lab frame)

Background distributions

$$A_{fb} = \frac{N^{\Delta y > 0} - N^{\Delta y < 0}}{N^{\Delta y > 0} + N^{\Delta y < 0}}$$

 $A_{fb} = 12 \pm 8(stat) \pm 1(syst) \%$

RLEnosmecked for reconstruction)

$$\Delta y \equiv y_t - y_{\bar{t}}$$

How would new physics look?

F: fraction of top pair events produced via Z' resonance

For $M_{Z'} = 750$ GeV:

F < 0.44 (expected)

F < 0.81 (observed)

2nd A_{fb} Results from CDF

(Fully corrected)

A(parton rest frame) = 1.3A(lab frame)

