NLO QCD prediction for W+3 jets

Daniel Maître

IPPP, Durham

in Collaboration with

C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde, H. Ita, D. Kosower, T. Gleisberg

Based on arXiv:0907.1984

Motivation

- Theoretical predictions for QCD processes are crucial for the physics program at a hadron collider
 - Signal
 - Background
- Many measurements are limited by uncertainties from theory prediction

Motivation

Higgs →WW search @ CDF

Motivation

• Higgs associated production WH $(H \rightarrow b\bar{b})$

Signal x 10

Leading order

- Lots of good general tools for leading order cross sections (Madgraph, Herwig, Sherpa, Alpgen, Whizard, Pythia, ...)
- Large factorisation/renormalisation scale dependence
- Possible improvements
 - Parton shower
 - Resummation (N....LL)
 - More orders in perturbation theory (N....LO)

NLO Corrections

Consider (infrared safe) observable

- Add contributions that have an higher order in perturbation theory, but yield the same value for an observable
 - Virtual

Real

NLO Corrections

- NLO corrections are needed for a good theoretical understanding of QCD processes
- Improve theory prediction for
 - Absolute normalization
 - Corrections can be very large
 - Reduce renormalization scale dependency
 - Shape of distributions

NLO with BlackHat+Sherpa

BlackHat

• Sherpa

Virtual part

- Leading order
- Real part
- Integration of the virtual part

Sherpa

[Gleisberg,Hoeche,Krauss,Schoenherr,Schumann,Siegert,Winter]

Provides

- Efficient phase space integration
- Event generation
- Analysis framework
- Automated dipole subtraction for the real part
- (and much more)
- Is written in C++

[Catani,Seymour] [Gleisberg,Krauss]

BlackHat

[Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, DM]

- Goal : automate computation of virtual 1-loop amplitudes for QCD processes
- C++ framework
- Uses new progress in the unitarity techniques, spinor formalism, complex momenta [Ossola,Papadopoulos,Pittau;Forde]
- Cut containing part: 4 Dim, using Forde's method
- Rational part:
 - 1- loop recursion (reuse of lower point results) [Berger,Bern,Dixon,Forde,Kosower]
 - Rational extraction using D-dim unitarity

[Ellis,Giele,Kunszt;Badger]

W+jets @ Tevatron and LHC

- W/Z+jets processes are important
 - For SM physics (Higgs, $t\bar{t}$, single top)
 - Background to new physics
 - Luminosity determination

So far

• MCFM

[John Campbell, Keith Ellis]

- NLO W+1 jet (Feynman diagrams)
- NLO W+2 jets (amplitudes from unitarity methods)
- Amplitudes
 - Leading color primitive amplitudes (2q3gW) [BlackHat]
 - All primitive amplitudes [Ellis,Giele,Kunszt,Melnikov,Zanderighi; van Hameren,Papadopoulos,Pittau]
- Cross section
 - Leading color W+3 jets (2q3gW) [Ellis,Melnikov,Zanderighi]
 - Leading color W+3 jets (all subprocesses) [BlackHat]
 - Leading color W+3 jets (with rescaling to account for subleading color)
 [Ellis,Melnikov,Zanderighi]
 - Full color W+3 jets (all subprocesses)

[BlackHat]

W+jets @ Tevatron

- CDF Collaboration
 - $320pb^{-1}$
 - Corrected for comparison
 with particle level
 - Comparison with
 - NLO: MCFM
 - MLM = Alpgen+Herwig
 - SMPR = Madgraph+Pythia

[[]CDF Collaboration PRD 77 011108, Arxiv:0711.4044]

W+3 jets @ Tevatron

$$\mu = \sqrt{m_W^2 + p_T^2(W)}$$

PDF: CTEQ6M Jet algorithm: SISCone [Salam,Soyez]

Scale Choice

- Theory predictions depend on two unphysical scales
 - Renormalization scale
 - Factorization scale
- Due to the truncation of the perturbation series
- Want to choose a scale "typical" for the process
- Complicated processes have many scales
- Good choice of scale
 - Cross sections and distributions should be positive
 - LO has a shape close to the NLO one

Scale choice

Scale choice

$$M_{ij}^2 = (p_i^{\text{jet}} + p_j^{\text{jet}})^2$$

- Does not work for all distributions!
- Distributions that are specifically sensitive to the W
- Choice of scale has more effect at LHC, but visible at Tevatron

 $\Delta R_{12} = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$

LHC

 $egin{aligned} E_T^e > 20\,{
m GeV} & E_T^{
m jet} > 30\,{
m GeV} & \left|\eta^{
m jet}
ight| < 3 & \left|\eta^e
ight| < 2.5 \ E_T^
u > 30\,{
m GeV} & R = 0.4 & M_T^W > 20\,{
m GeV} \end{aligned}$

W+3 jets @LHC

Conclusions

- Presented first full color NLO results for W+3jets @ Tevatron and LHC
- Show potential of unitarity techniques for phenomenology

