"Pi of the Sky": modelling of the detector response for more effective search for optical GRB counterparts

Lech Wiktor Piotrowski for the "Pi of the Sky" Collaboration

Institute of Experimental Physics, University of Warsaw

Kraków, 16.VII.2009

Lech Wiktor Piotrowski

"Pi of the Sky": modelling of the detector response...

Kraków, 16.VII.2009

Gamma Ray Bursts

One of the most powerful explosions in the Universe known to man, probably created by a Hypernovae collapse (long bursts) or two neutron stars merge (short bursts), leading to a black hole creation.

(very short) Characteristics:

- Distance: cosmological (most distant: z=6.7)
- ullet Radiation: mainly γ -rays, additionally X-ray, optical and radio
- $\bullet\,$ Estimated energy (radiation in jets): $\sim 10^{51}$ erg

Observational facts:

- ullet γ -rays: constant sky monitoring by satellites
- X, optical, radio: follow-up observations (delayed) Challenge: observation from the very beginning.

SimItanous observations are crucial for GRBs' understanding.

Optical sky monitoring - Pi of the Sky

Full system (under construction): 2 arrays of cameras, 16 cameras each, placed far apart (\sim 100 km), observing same part of the sky

- Field of view: 2 sr (comparable to main GRB satellite experiments)
- Good time resolution: ${\sim}10~{\rm s}$
- \sim 3000 frames/night/camera
- Large data stream: ${\sim}1~\text{TB/night}$
- Multilevel trigger for real-time flash recognition
- Arrays' coincidence required for satellite flash rejection (significant background source)
- Autonomous operation
- Expected range: $12^m 14^m$

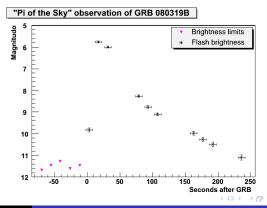
Lech Wiktor Piotrowski

Pi of the sky - cameras

The cameras - unique concept and design:

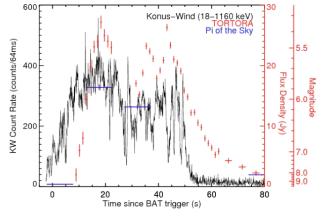
- CCD sensors: 2000 × 2000 pixels, 16-bits, low noise
- Fast programmable electronics
- Shutter sustains: 10⁷ cycles
- Canon lenses: f=85mm, f/d=1.2
- $\bullet~20^\circ\times20^\circ$ field of view
- Pixel size: 36"
- Full control over ethernet

Working prototype:


- Two cameras working in coincidence
- Collecting data since June 2004 in Las Campanas Observatory, Chile.

"Pi of the Sky" prototype - two cameras on paralactic mount

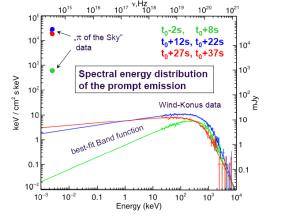
GRB080319B


- The brightest (in optical and X) GRB ever observed
- ullet Peak brightness ~ 18 s after the trigger: 5.7 m
- Distance: *z* = 0.97
- Observed by "Pi of the Sky" from the very beginning First optical observations starting 2.25 s before the γ -ray trigger

Lech Wiktor Piotrowski

The main success - GRB080319B

• Clear correlation of peaks in γ -ray and optical emission

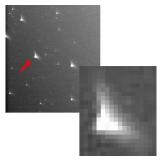


J. L. Racusin et al., Broadband observations of the naked-eye big γ -ray burst GRB 080319B, Nature 455, 183-188 (2008)

Lech Wiktor Piotrowski

The main success - GRB080319B

- Clear correlation of peaks in γ -ray and optical emission
- Optical flux much above expectations \rightarrow different production mechanism
- Challenge for GRB models


J. L. Racusin et al., Broadband observations of the naked-eye big γ -ray burst GRB 080319B, Nature 455, 183-188 (2008)

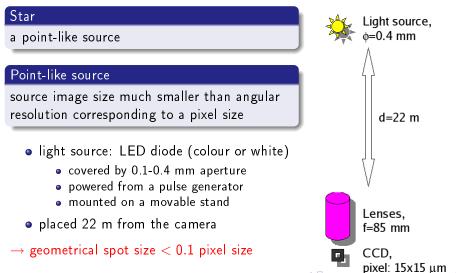
Pi of the Sky PSF

Large field of view \rightarrow problems with deformed shape - Point Spread Function (PSF)

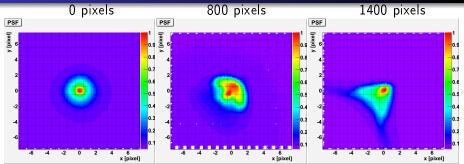
The closer the image to the centre of the frame

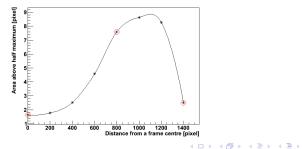
- the more gaussian profile
- the better standard photometry and astrometry
- The closer to the edge of the frame
 - the more distorted PSF
 - the larger brightness and position uncertainties

GRB 080319B, 12 s after the trigger


Solutions

- reject the most distorted star images: only for analysis with large statistics (eg. variable stars)
- find parametrisation of distorted profiles

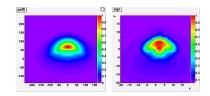

Kraków, 16.VII.2009


Idea of PSF measurements

Parametrization requires precise shape measurements - very hard to obtain from real star images \rightarrow laboratory measurements required.

PSF of Pi of the Sky cameras

Lech Wiktor Piotrowski


"Pi of the Sky": modelling of the detector response...

< ≣ ▶ া≣ পি ৭৫ Kraków, 16.VII.2009

PSF parametrisation

PSF deformation

due to optics errors - superposition of optical aberrations like coma, astigmatism, spherical aberration, defocus, etc.

In general:

$$PSF(x_i, y_i) \sim \left| \iint_{aperture} \frac{\cos \theta}{r} T(x, y) e^{-ik(W(x, y, \theta) + L(x, y))} \right|^2$$

where x, y - aperture (lens) coordinates, x_i, y_i - image coordinates, T(x, y) - lens transmission, k - wavevector, $W(x, y, \theta)$ - wavefront.

L(x, y) - lenses focusing function, can be approximated by a sum of Zernike polynomials (in thin lenses approximation).

Problems:

- paraxial approximation not possible
- significant transmission changes with observation angle

Parametrisation challenges:

- Non-paraxial approach
- Measured PSF is an integral of real PSF over CCD pixels deconvolution may be needed
- Parametrisation implementation into a photometric algorithm

However, if those challenges are overcame, we gain:

- more precise photometry and astrometry
 - better measurement of objects variability
 - higher sensitivity to optical flashes
- new possibilities:
 - simulation of Pi of the Sky star images and frames
 - transformation of a real frame to a frame without deformations

Other results from "Pi of the Sky":

A. Majczyna, "Search for optical flashes of astronomical origin with "Pi of the Sky" prototype" at the poster session

More information: http://grb.fuw.edu.pl

The "Pi of the Sky" is a collaboration of:

- Soltan's Insitute for Nuclear Studies
- Center for Theoretical Physics of the Polish Academy of Science
- Faculty of Physics, University of Warsaw
- Institute of Electronic Systems, Warsaw Univ. of Technology
- Space Research Centre of the Polish Academy of Science
- Faculty of Physics, Warsaw Univ. of Technology