

Heavy quark meson spectroscopy at CDF X(3872) mass and evidence for Y(4140)

Felix Wick (University of Karlsruhe)

on behalf of the CDF collaboration

European Physical Society HEP 2009

- discovery of several states with charmonium-like decays but inappropriate properties (XYZ) in recent years
- possibly explained by exotic models beyond usual mesons
- Precision Measurement of the X(3872) Mass in $J/\psi\pi^+\pi^-$ Decays

arXiv:0906.5218v1 [hep-ex], submitted to PRL

• Evidence for a Narrow Near-Threshold Structure in the $J/\psi\phi$ Mass Spectrum in $B^+ \rightarrow J/\psi\phi K^+$ Decays Phys. Rev. Lett. **102**, 242002 (2009)

Tevatron and CDF at Fermilab

Tevatron:

• proton-antiproton collider • $\sqrt{s} = 1.96 \,\mathrm{TeV}$

CDF II:

- multipurpose detector
- excellent tracking and mass resolution

X(3872)

- nature of X(3872) state still unclear
- does not fit properly in charmonium spectrum
- several possible exotic explanations
- mass analysis can test two different hypotheses
 - four-quark state (model of Maiani et al.) prediction: X(3872) mass structure consists of two separate states
 Phys. Rev. D 71, 014028 (2005)

 molecular state composed by D⁰ and D^{0*} mesons test by comparison of X(3872) mass with sum of meson constituent masses
Phys. Lett. B 590, 209 (2004)
Phys. Lett. B 588, 189 (2004)

$X(3872) \rightarrow J/\psi \pi^+\pi^-$ Neural Network

- multivariate technique to separate signal and background
- training samples
 - <u>signal:</u> simulated events
 - <u>background</u>: sidebands in data mass spectrum
- most important input quantities
 - Q value of the decay
 - transverse pion momenta
 - kinematic fit quality
 - muon identification quantities
- select candidates with network output > 0.25

cut on neural network output

number of candidates per event <= 3

select around 34500 $\psi(2S)$ and 6000 X(3872) signal events

Mass Shape Study

- compare with ensemble of simulated experiments assuming single state
- no evidence for two states \longrightarrow limit on maximum mass difference
- data compatible with single state \rightarrow mass measurement

- mass shape described by BW function convolved with Gaussian resolution (BW width and resolution fixed)
- signal width scaling parameter t as free parameter in the fit

Limit on Maximum Mass Difference

limit determination by means of simulated ensembles with various mass differences Δm between two possible states

Felix Wick

EPS HEP 2009

Mass Measurement

 $\pi^+\pi^-$

select around 6000 X(3872) signal events in $J/\psi\pi^+\pi^-$ mass spectrum

Felix Wick

- unbinned maximum likelihood fit
- signal:

EPS HEP 2009

non-relativistic BW function (width fixed to average value from Babar and Belle) convolved with Gaussian resolution (obtained from simulation)

 background: second order polynomial

9

X(3872) Mass

- momentum scale uncertainty as main source of systematic errors can be estimated by means of $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
- $m(X(3872)) = 3871.16 \pm 0.16(\text{stat}) \pm 0.19(\text{sys}) \text{ MeV/c}^2$

Y(4140)

- $J/\psi\phi$ good channel for exotic meson search
 - final state consisting of two vector mesons (like $X(3872) \rightarrow J/\psi\rho(\omega)$ and $Y(3930) \rightarrow J/\psi\omega$)
 - invariant mass high enough for open charm decays \longrightarrow charmonium state unlikely
- search near $J/\psi\phi\,$ threshold motivated by closeness of Y(3930) to $J/\psi\omega\,$ threshold
- strong background reduction by using exclusive ${\it B}^{\rm +}$ decays to $J/\psi \phi K^+$

$B^+ \rightarrow J/\psi \phi K^+$ Selection

- reconstruct $J/\psi \rightarrow \mu^+\mu^-$, $\phi \rightarrow K^+K^-$, additional kaon track
- cut on decay length in the transverse plane because of long *B*-meson lifetime: $L_{xy}(B^+) > 500 \,\mu\text{m}$
- use *dE/dx* and ToF information summarized in log-likelihood ratio for kaon identification

EPS HEP 2009

Felix Wick

- fit to data with Gaussian signal and linear background function
- B⁺ signal of 75±10 events is largest sample to date
- select candidates ±3σ (17.7 MeV/c²) around B⁺ peak

- B^+ sideband-subtracted without ϕ mass window requirement
- fit function is P-wave relativistic BW convolved with Gaussian resolution (obtained from simulation)

Dalitz Plot

 $J/\psi\phi$ Mass Spectrum

- $\Delta M = m(\mu^+\mu^-K^+K^-) m(\mu^+\mu^-)$
- 73 events with $\Delta M < 1.56 \text{ GeV/c}^2$

Evidence for new Structure

- calculate log-likelihood ratio $-2\ln(\mathcal{L}_0/\mathcal{L}_{max})$ of null hypothesis fit and signal hypothesis fit by using pure three-body phase space background
- modeling combinatorial background in B⁺ mass window separately as flat spectrum decreases this value
- MC simulations to estimate probability of background fluctuations creating such signal anywhere in the mass window \longrightarrow significance of 3.8 σ
- systematic uncertainties estimated by varying the fit model
- $m = 4143.0 \pm 2.9(\text{stat}) \pm 1.2(\text{sys}) \text{ MeV/c}^2$

using world-average J/ψ mass

• $\Gamma = 11.7^{+8.3}_{-5.0}(\text{stat}) \pm 3.7(\text{sys}) \,\text{MeV/c}^2$

Summary

- X(3872) mass shape studies
 - no evidence for two-state hypothesis proposed by four-quark model
 - most precise mass measurement still consistent with model of molecular bound state consisting of $D^0 D^{0*}$ mesons
- evidence for an exotic charmonium-like state $Y(4140) \rightarrow J/\psi\phi$ $-m = 4143.0 \pm 2.9(\text{stat}) \pm 1.2(\text{sys}) \text{ MeV/c}^2$ $-\Gamma = 11.7^{+8.3}_{-5.0}$ (stat) ± 3.7 (sys) MeV/c²

