LHCb upgrade

Marcin Kucharczyk

Syracuse University

EPS 2009, Krakow

Detectors and accelerators 18.07.2009

Present LHCb detector

Crucial for B physics

- optimised geometry and choice of luminosity
- trigger efficient in hadronic & leptonic modes
- excellent tracking and vertexing
- excellent particle ID RICH (2-100 GeV/c)

TRIGGER: hardware - L0 & software - HLT

- L0: 40 MHz \rightarrow 1 MHz (high $p_T \mu, e, \pi^0, h, \gamma$)
- HLT: 1 MHz \rightarrow 2 kHz (farm of 1800 CPU)

Present LHCb detector conditions

- √s = 10-14 TeV
- $\sigma_{bb} = 350-500 \ \mu b$
- σ_{inel} = 80 mb
- $L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
 - 1 year at nominal lumi: ~2 fb⁻¹

- mass resolution: 14 MeV (B_s)
- time resolution: 40 fs
- IP resolution: 30 µm
- PV resolution (z): 47 µm

LHCb detector status

Installation of all subdetectors finished

LHCb physics program (10 fb⁻¹) wrt New Physics searches

Precise measurement of γ angle (tree & loop) \rightarrow NP: $B_{s} \rightarrow D_{s}K$ (tree) & $B_{d} \rightarrow \pi^{+}\pi^{-}$ (penguin)

CP violation measurements \rightarrow NP: compare CPV angle in $\phi K_s \& J/\Psi K_s$

Rare decays with BR down to 10⁻⁹ \rightarrow NP: Asymmetry FB of $B_d \rightarrow K^* \mu \mu$ $\rightarrow NP: B_c \rightarrow \mu\mu at SM$

Other New Physics searches

$$B_d \rightarrow K^* \gamma, B_d \rightarrow K^{*0} I^+ I^-, B_s \rightarrow \phi \gamma, b \rightarrow s I^+ I^-, ...$$

3

$$\begin{array}{l} B_{s} \rightarrow D_{s} \Pi, \ B_{s} \rightarrow J/\Psi \phi, \\ B_{s} \rightarrow J/\Psi \eta^{(\prime)}, \ B_{s} \rightarrow \phi \phi, \dots \end{array}$$

$$B_d \rightarrow \Pi^+\Pi^-, B_s \rightarrow KK,...$$

 $B_d \rightarrow \Phi K_s, B_d \rightarrow J/\Psi K_s, B_s \rightarrow \Phi \Phi_s.$

$$B_d$$
→φ K_s , B_d →J/Ψ K_s , B_s →φφ,...
 B_d →ρπ, B_d →ρρ,...

$$B_0 \rightarrow K^* u^+ u^-$$
, $B_a \rightarrow u^+ u^-$,...

$$B_s \rightarrow D_s K, B_d \rightarrow DK^{*0},$$

 $B_d \rightarrow \Pi^+\Pi^-, B_s \rightarrow KK,...$

$$D_0 / (\mu \mu), D_s / \mu \mu, \dots$$

Physics motivation for LHCb upgrade

LHCb upgrade: 100 fb⁻¹ (5 years at $L=2\times 10^{33} cm^{-2}s^{-1}$) 2015/2016

• LHCb & ATLAS & CMS/ONLY ATLAS & CMS/ONLY LHCb/NO EXPERIMENT finds New Physics

→ worthwhile to continue exploration of flavour structure of NP / analyze flavour structure of NP for (tiny) deviations

• For many observables 10 fb⁻¹ will not make us reach theoretical limits

 \rightarrow theoretical progress in B physics + refined lattice calculations

 \rightarrow New Physics effect may be subtle and need higher statistics to be elucidated

• (Precise) angle measurements - Φ_{d} , Φ_{s} , γ (knowledge of γ to a sub-degree level) - study nature of New Physics (Φ_s , γ) • $b \rightarrow s$ transitions - $sin(2\beta^{eff})$ down to 0.04 $(B_d \rightarrow J/\Psi K_s, B_d \rightarrow \phi K_s)$ - very sensitive to NP extrap. from LHCb-2007-130 • $B_c \rightarrow \phi \phi$ - interesting $b \rightarrow s$ penguin mode for LHCb - β_{s}^{eff} mixing phase in penguins $\sigma \approx 0.015$ (SM=0) - *yield (100 fb⁻¹): 0.3M* extrap. from LHCb-2007-047 • $B \rightarrow K^* \mu \mu$ - zero for $A_{FR}(s)$ to ~2% (but theoretical error: 9%) - yield (100 fb⁻¹): ~0.35M extrap. from LHCb-2008-041 • New Physics with $B_s \rightarrow \mu\mu$ • Lepton Flavour Violation searches in $\tau \rightarrow \mu \mu \mu$ decays

Expected sensitivity for LHCb upgrade (100 fb⁻¹)

LH	CC	-20	08-	00	17)
----	----	-----	-----	----	-----

	0
Observable	Sensitivity
$S(B_s \rightarrow \phi \phi)$	0.01 - 0.02
$S(B_d \rightarrow \phi K_S^0)$	0.025 - 0.035
$\phi_s (J/\psi\phi)$	0.003
$\sin(2\beta) \left(J/\psi K_S^0\right)$	0.003 - 0.010
$\gamma (B \rightarrow D^{(*)}K^{(*)})$	$< 1^{\circ}$
$\gamma \ (B_s \to D_s K)$	$1 - 2^{\circ}$
$\mathcal{B}(B_s \rightarrow \mu^+ \mu^-)$	5 - 10%
$\mathcal{B}(B_d \to \mu^+ \mu^-)$	3σ
$A_T^{(2)}(B \to K^{*0}\mu^+\mu^-)$	0.05 - 0.06
$A_{\rm FB}(B \to K^{*0} \mu^+ \mu^-) s_0$	$0.07 \ \mathrm{GeV^2}$
$S(B_s \rightarrow \phi \gamma)$	0.016 - 0.025
$A^{\Delta\Gamma_s}(B_s \to \phi\gamma)$	0.030 - 0.050
charm x'^2	2×10^{-5}
mixing y'	2.8×10^{-4}
CP y_{CP}	$1.5 imes 10^{-4}$

Examples of NP with 100 fb⁻¹

• Precise measurement of Φ_s

 $\Phi_{s} = -2\eta\lambda^{2}$ (in SM)

New Physics may manifest itself with e.g. $B_s \rightarrow J/\Psi \phi$ through significantly larger value wrt very small SM expectation

Precise measurement with 100 fb⁻¹, noting that in SM ϕ_s is very well constrained:

Φ_{c} (indirect) = -0.037 ± 0.002

(upgraded-) LHCb	2 fb ⁻¹	10 fb ⁻¹	100 fb ⁻¹
statistical error	0.021	0.009	0.003

(extrapolation from LHCb-2003-119)

Here we must worry about penguins, and their relative effect could be large compared with this precision. Control with $B_d \rightarrow J/\psi\rho$ (Fleischer, Phys.Rev. D60 (1999) 073008)

• $B_c \rightarrow \phi \phi$

Fully hadronic decay Yield (100 fb⁻¹): 0.3M

Time dependent CPV \rightarrow full angular fits needed \rightarrow statistics

β_s^{eff} mixing phase in penguins $\sigma = 0.015$

(extrapolation from LHCb-2007-047)

(SM=0)

B

Κ

LHCb upgrade strategy

- Goal: 5 years with L = 2 × 10³³ cm⁻²s⁻¹ (100 fb⁻¹)
 - → 30 MHz of crossing with ≥ 1 interaction (10 MHz for L=2 × 10^{32} cm⁻² s⁻¹)
 - \rightarrow <number> of visible interactions / x-ing: ~5 (~1.2 for L=2 × 10³² cm⁻² s⁻¹)

Upgrade strategy

- improve ×2 hadron trigger efficiencies
- move L0 to a fully software trigger
- improve resolutions (photon detector, RICH)
 - all detector information to be used in trigger
 - replace front-end electronics of most detectors
 - replace all silicon detectors: VELO, TT, IT
 - replace RICH photon detectors

Trigger & DAQ

MC studies

started

Trigger needs for upgrade

- reconstruct all primary vertices per bunch crossing
- measure track impact parameter (IP) to any PV
- measure track p_{τ} with significant IP

Proposal for "upgraded" trigger

Cut on p_{τ} & *IP/track* simultaneously

- \rightarrow software trigger on large CPU farm to deal with input rate to 30 MHz
- \rightarrow **need to improve detector granularity** to deal with CPU time required for upgraded trigger

Example: $B_s \rightarrow \phi \phi$ (after first step of current High Level Trigger)

 $L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

 $E_{\tau} > 3.5 \text{ GeV} \rightarrow \text{efficiency} = 22\%$ Minimum bias retention: 10 kHz

 $L = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

 $E_T > 2 \text{ GeV} \rightarrow \text{efficiency} = 45\%$

Minimum bias retention: 28 kHz

Vertex detector

Needs for upgrade

- radiation hard solutions flux (100 fb⁻¹) : $1.4 \times 10^{16} n_{eq} \text{ cm}^{-2}$
- lower occupancy
- improved pattern recognition

Design optimum detector

\rightarrow Pixel-based system

Two geometris are studied:

- rectangular pixel cells (50×400 μ m²), readout with ASIC based on FPIX2
- square pixel cells (50×50 μ m²), readout with ASIC based on TIMEPIX / MEDIPIX

\rightarrow Pixel system offers advantages

- better resistance to radiation
- noise immunity
- better ghost reduction

Under study

- radiation hardness
- sensor & electronic thinning
- cooling (CVD Diamond?)
- new geometry (smaller radius?)
- **optimisation of RF foil design** (towards minimization of the material in front of the first position measurement?)

Tracking system

- Higher luminosity has stronger effect on occupancy & ghosts in tracking system
 - especially in Outer Tracker (OT) \rightarrow gas technique used
- Increase area covered by Inner Tracker (silicon)
- Request for 40 MHz readout \rightarrow change design of IT
 - new sensor, new FEE chip, ...
- Material reduction (if possible)
 - crucial for momentum resolution & occupancy

• NEW POSSIBILITY FOR TRACKING

FIBER TRACKER WITH MIXED FIBER DIMENSIONS

- Inner Tracker: 250 μm, Outer Tracker: 700-1000 μm
- readout with SiPM and/or conventional MAPMT

ADVANTAGES

- simplified services configuration: no cables, no cooling, thinner frames, FEE outside \rightarrow less material budget
- good timing performance
- increase granularity in x (good spatial resolution)

Possible problems (fibers)

- SiPM readout and its optimisation
- radiation
- mechanics

• OTHER POSSIBILITY - SILICON STRIPS

- enlarge IT remove inner section of OT & increase IT
- lower tracking system occupancy
- lower material (when possible)

RICH / TORCH

RICH wrt upgrade

- Maintain RICH 1 & 2
- New possibility replacing aerogel in RICH 1 with TORCH
- In any case NEW PHOTO SENSORS two options:
 - **new HPD** (needs R&D to study ion feedback rate)
 - **MAPMT** (Multi-Anode Photomultiplier Tubes)

both options with new independent chip readout

TORCH - combination of TOf & RiCH quartz plane at the entrance of calorimeters TOF performance at 40ps level MicroChannel Plate PM multianode readout

- idea is to measure time and position of Cherenkov γ's
 - focusing system needed
- A lot of R&D needed

(quartz plane mechanics, aging of MCP, electronics etc.)

• project independent of RICH layout

EM Calorimeter

• At 2x10³³ worst place has 2.5 Mrad/year

- \rightarrow projected useful life is only 2 years
- \rightarrow no data for higher doses (up to factor 5)
- Need replacement with radiation hard technology
- Useful would be increased segmentation in inner part

 \rightarrow dense detection medium material: PbWO₄

ELECTRONICS

- FEE readout already at 40MHz
- need to lower PM gain (×5)
- need to increase preamplifier sensitivity
- need to reduce noise

Longitudinal dose in the LHCb ECAL

Muon system

- Major part of the muon detector can operate at 2×10³³ for 5 years
 - \rightarrow FE electronics is already at 40 MHz
- Upgrade of M1 station is not required
 - \rightarrow it will likely be removed
 - \rightarrow background / updated L0
- Ageing tolerable up to 100 fb⁻¹
 - \rightarrow possible exception of region M2R1
 - → possibility of replacement of the inner parts with large area GEM (70×30 cm²) or with MWPC
- Transition to a fully 3D muon projective readout
 - \rightarrow could reduce fake associations

Limitations of present design at higher luminosities

- dead time caused by high rate in inner regions
- aging due to radiation in inner regions

Conclusions

- LHCb installed and ready for data taking
 - initial plan: collect 10 fb⁻¹ in first 5 years
- For upgrade leading to a factor of ≥ 10 improvement in sensitivity
 - broader scope of NP exploration
- LHCb upgrade foreseen for 2015/16
 - schedule coupled with LHC long shut-down planned for ${\sim}2014$
 - luminosity increased to $2\times10^{33}\ cm^{-2}s^{-1}$
 - expected 100 fb⁻¹ after 5 years of data taking
- Main challenges for higher luminosity have been identified
 - trigger & detector simulations have been started
 - R&D on subdetector projects is under way