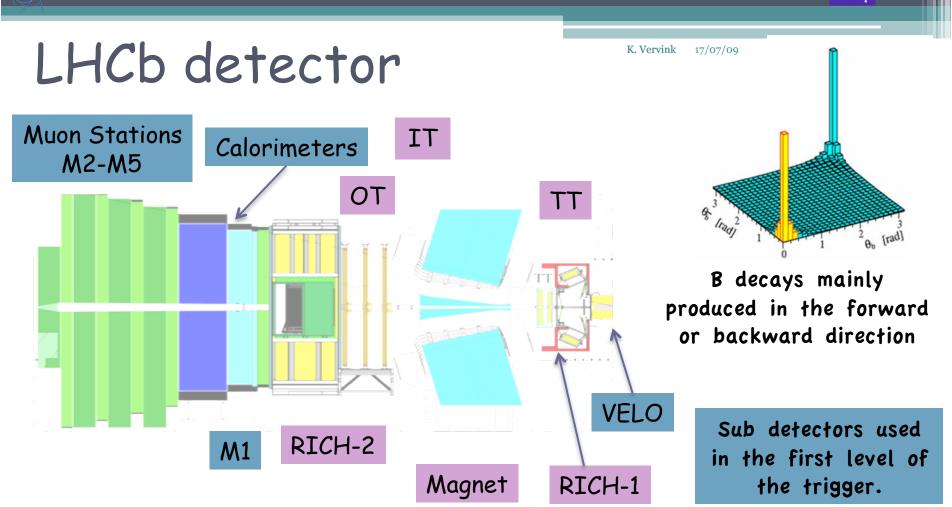


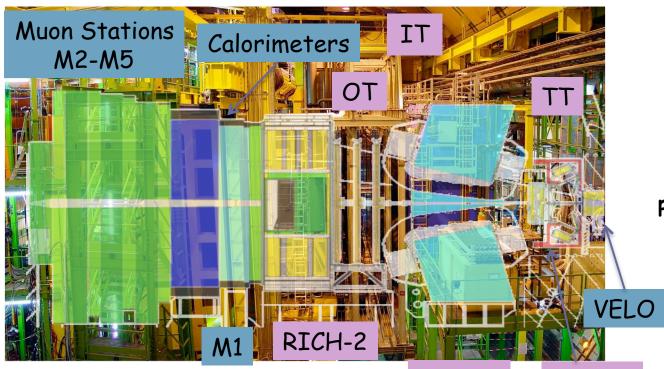
High Level Trigger for rare decays at LHCb



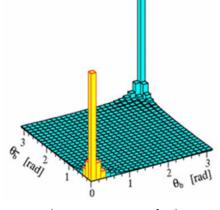
Kim Vervink
On behalf of the LHCb collaboration

17th of July 2009

Detector fully equipped and commissioned.


Physics goal: search for New Physics in B decays in LHCb.

See also talk at plenary by A. Golutvin "LHCb"


- Wednesday 22nd at 14h30

LHCb detector

K. Vervink 17/07/09

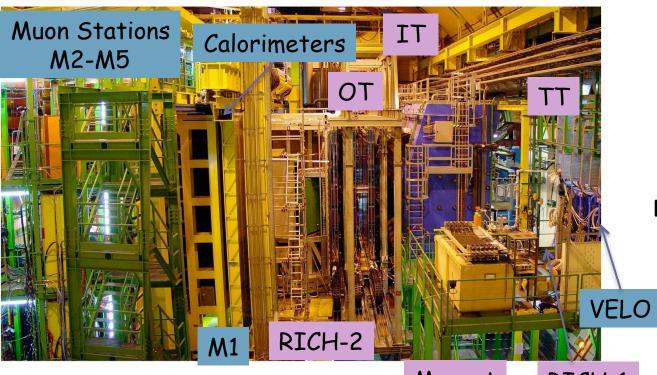
B decays mainly produced in the forward or backward direction

Sub detectors used in the first level of the trigger.

Magnet

RICH-1

Detector fully equipped and commissioned.


Physics goal: search for New Physics in B decays in LHCb.

See also talk at plenary by A. Golutvin "LHCb"

- Wednesday 22nd at 14h30

LHCb detector

K. Vervink

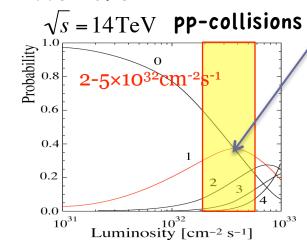
17/07/09

B decays mainly produced in the forward or backward direction

Magnet RICH-1

Sub detectors used in the first level of the trigger.

Detector fully equipped and commissioned.


Physics goal: search for New Physics in B decays in LHCb.

See also talk at plenary by A. Golutvin "LHCb"

- Wednesday 22nd at 14h30

LHCb trigger environment 17/07

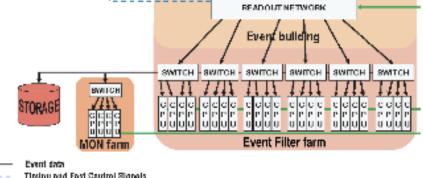
Production:

Tune luminosity: most probable is 1 interaction/X'ing

$$\mathcal{L} = 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$

10¹² bb per year or 10⁵ per s.

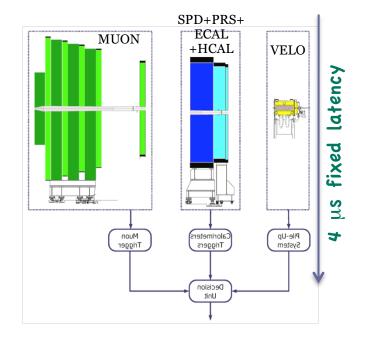
Corresponds to: 40MHz $\sigma_{b\bar{b}} = 500 \mu b$


Both bunches filled: 30MHz >2 tracks in acceptance: 10MHz

15kHz of B decays with at least 1B in the acceptance BR of interesting B decays: typically < 10⁻⁵ O(1)Hz

Trigger is essential!!!

General strategy


- 1) First level hardware trigger (LO)
- > Readout netwerk
- 2) CPU farm (High Level Trigger):
- \rightarrow Monitoring and storage $_$

Country and Fast Courtrel Signals
 Control and Manitoring data

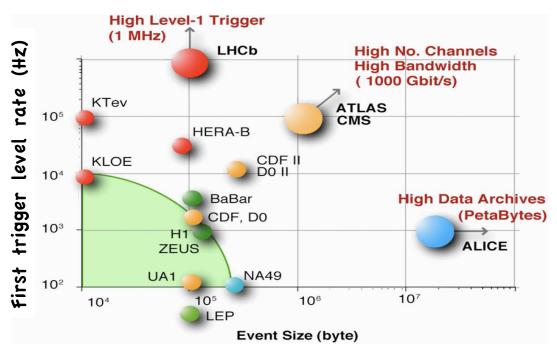
LO trigger

LHCb looks for B-mesons, lower mass (and p_{τ}) than particles searched for by GPD's

LO output is large:

K. Vervink 17/07/09

Custom Electronics

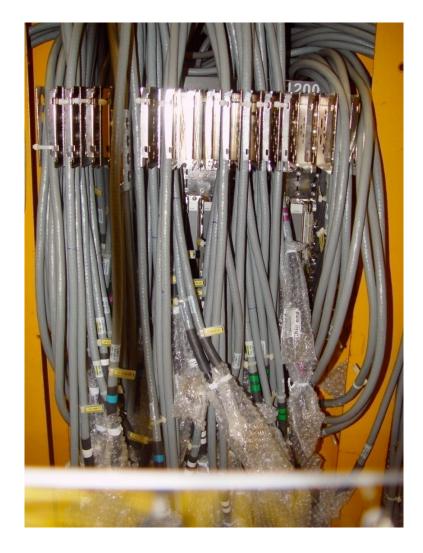

4 subdetectors read out and provide LO trigger

• Velo: Pile-up system

• Ecal: single e/γ with p_{τ} > 2.5 GeV \rightarrow 200kHz

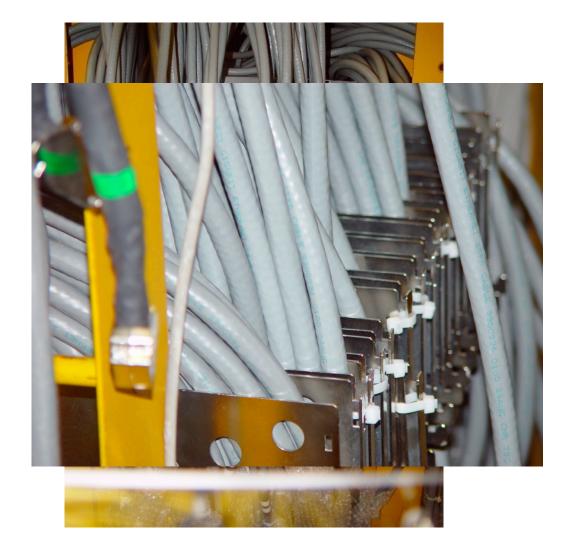
• Hcal: single hadron with p_{τ} > 3.5 GeV \rightarrow 700kHz

• Muon: single μ with p_{τ} > 1.0 GeV \rightarrow 200kHz

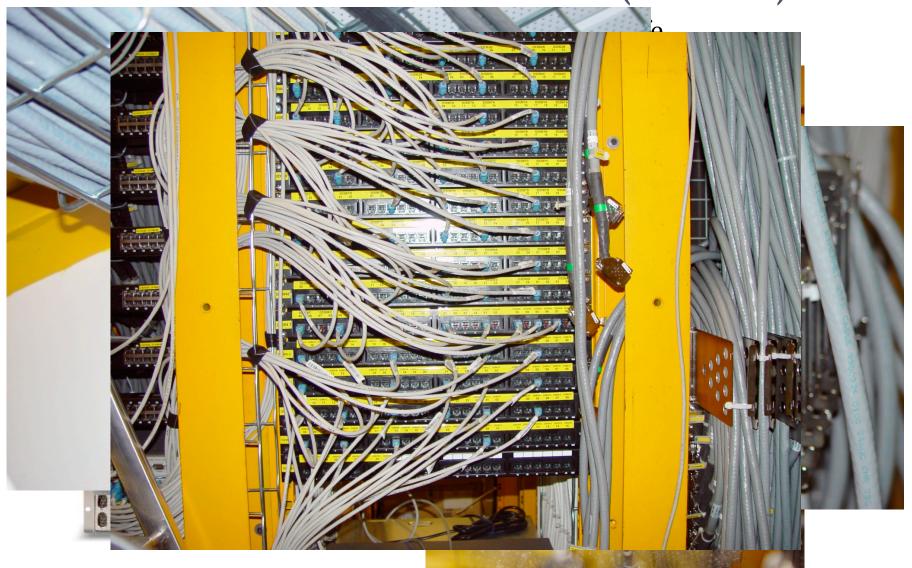


Glossy-Print

Real Life



Glossy-Print


Real Life

K. Vervink 17/07/09

LHCb

K. Vervink 17/07/09

HIt trigger: 2 layers

 $p_{\mathrm{T}} - \mu$ $p_{\mathrm{T}}^{\mu_{1}} + p_{\mathrm{T}}^{\mu_{2}}$ E_T-hadron E_T-electron $E_T - \gamma, \pi^0$

 μ , $\mu\mu$ -alley μ h-alley hadron-alley electron-alley γ , π^0 -alley

Lumi-alley

K. Vervink

HLT2

di — leptons

 $B \to \mu(h)X$

 $B \rightarrow 2, 3, 4h$

 $B \to \gamma X$

 $B \to K_S^0 X$

 $B \to D^{(*)}X$

LO alley structure is maintained in Hlt1 and extended in Hlt2

Signal selected by several triggers optimize robustness

~1 MHz

Random

#1+1:

confirmation of the LO object add information of T stations and Velo search for tracks only in small window

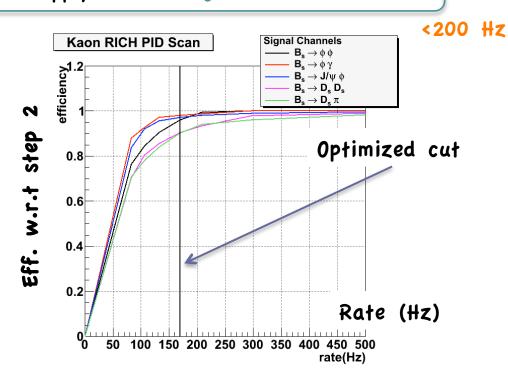
~30 kHz

M2 M3 M4 M5 Trackers M1HCAL **VELO**

HIT2: some additional inclusive trigger streams (K_s , ϕ) and a handful of exclusive selections (ex. $B_s \rightarrow \phi \gamma$). ~2 kHz

Hlt2 trigger example:

K. Vervink 17/07/09


the inclusive ϕ alley

1. tracks from pattern recognition (no fitting) - apply "robust" cuts: P_T , distance to IP, ϕ mass...

800 Hz

~30 kHz

3. Now with a reduced rate below 1000 Hz, we can apply the PID algorithm

2000 Hz

2. fancier tracking algorithm applied on reduced rate: Kalman fit tracks and apply cuts on track and vertex resolutions.

Hlt2 Incl. ϕ efficiency on offline selected events.

$$B_{s} \rightarrow \phi \gamma \qquad 75\%$$

$$B_{s} \rightarrow J/\psi(\mu\mu)\phi \qquad 45\%$$

$$B_{s} \rightarrow J/\psi(ee)\phi \qquad 55\%$$

$$B_{s} \rightarrow \phi\phi \qquad 82\%$$

$$B_{s} \rightarrow D_{s}D_{s} \qquad 40\%$$

$$B_{s} \rightarrow D_{s}\pi \qquad 25\%$$

Channels will also be triggered by other incl. trigger lines

K. Vervink 17/07/09

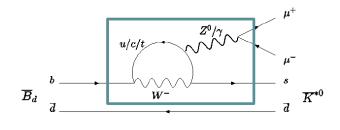
Trigger performance on rare decays:

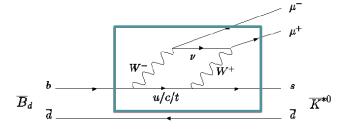
1.)
$$B^o \rightarrow \kappa^* \mu\mu$$

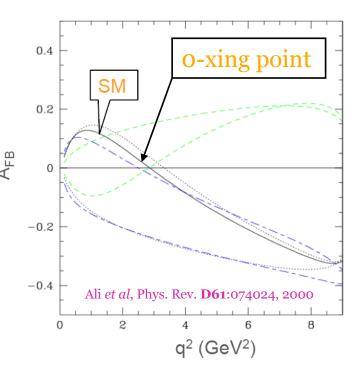
2.)
$$B_s \rightarrow \phi \gamma$$

See also: Search for New Physics at LHCb:

CP violation in Charm sector and rare decays of B hadrons (M. H. Schune)


II Flavour Physics - Friday 17th at 10h00


NOTE: trigger efficiencies quoted for offline selected events.



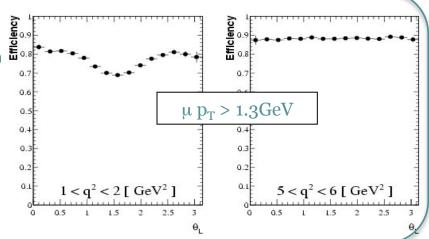
- FCNC decay which proceeds through a $b \rightarrow s$ transition. New Physics can enter in the loops of the diagram.
- Decay described by three angles $(\theta_1, \phi, \theta_k)$ and di- μ invariant mass q².
- By measuring angular distribution asymmetries, the uncertainty from $B^0 \rightarrow K^* \mu \mu$ transition form-factors cancel.
- Start with forward-backward asymmetry Ass of θ_1 distribution and compare with the SM prediction.
- Analysing simultaneously the three angular distributions as function of q² gives sensitivity to each of its Wilson coefficient.

$K^*\mu\mu$ through the trigger: μ and hadron alley

- The muon alleys are main trigger line but beware of soft muon signal.
- Cuts on P_T affects the angular distribution.

Level 0

```
Single muon: - P_{\tau} muon > 1.3 GeV
```


- only required for 1 muon to 0.8 each > 0.1 Gov

Di-muon: - P_{τ} of each > 0.1 GeV

- sum of P_T>1.0 GeV

Hadron

LO efficiency: ~90%

Ilt 1 + 3

```
(Di) Muon alley: - P<sub>T</sub> cut, IP (and di-muon mass)
```

Muon + track alley: - 2nd μ can have low p_T

Hadron alley:

#lt1 #lt2t eff: ~83% eff: 80% eff: ~80% eff: 85%

eff: ~20% eff: 80%

LO x Hlt1 x Hlt2 efficiency on offline selected events: 80%.

Distortion of acceptance function 17/07/0

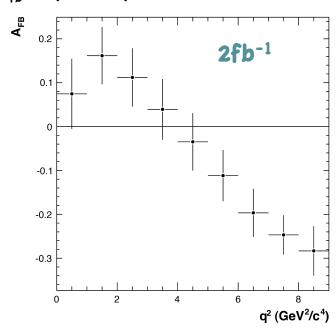
Trigger and offline selection and the detector resolution affects the angular distribution θ_l . •Zero-crossing point of A_{fb} stays intact!!

Parameterize the acceptance function

- 1. MC simulation: The momentum distribution of B_d needs to be accurately generated. Cross check with B^0 -> J/ψ K*.
- 2. Control sample: B^0 -> J/ψ K*: triggered and selected by the same filters as the signal -- but 20 times more statistics and no A_{fb} asymmetry.

2fb⁻¹:

Expected number of signal events: 4300 Precision on determining the


zero-crossing: ±0.5 GeV²

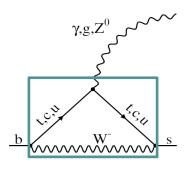
Statistical uncertainty on $A_{fb}(q^2)$: ~0.6 GeV²

BELLE has ~230 K*ll events (657M BB) [1] CDF ~20 K* $\mu\mu$ events (0.9fb⁻¹) [2]

[1] arXiv:0810.0335v1

[2] arXiv:0804.3908v1

Trigger performance on rare decays:


1.) $B^o \rightarrow \kappa^* \mu\mu$

2.) $B_s \rightarrow \phi \gamma$

THCP

Probe New Physics in loop which would modify the photon polarisation.

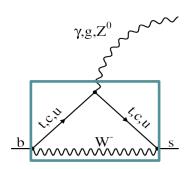
Measure the time-dependent decay rate:

$$\Gamma(B_s^{(-)} \to \phi \gamma) = |A|^2 e^{-\Gamma_s t} \Big[\cosh(\Delta \Gamma_s t/2) + A_s^{\Delta} \sinh(\Delta \Gamma_s t/2) \pm C_s \cos(\Delta m_s t) \mp S_s \sin(\Delta m_s t) \Big]$$

$$C_s \approx 0 \qquad S_s \approx \sin 2\psi \sin 2\phi \approx 0$$

$$\sin \varphi_s \stackrel{SM}{\approx} 0$$

- · Decay described by proper-time (t) but not by tagging
- Reliable theoretical prediction at NNLO


$B_{s} \rightarrow \phi \gamma$

K. Vervink 17/07/09

Probe New Physics in loop which would modify the photon polarisation.

Measure the time-dependent decay rate:

$$\Gamma(B_s^{(-)} \to \phi \gamma) = |A|^2 e^{-\Gamma_s t} \left[\cosh(\Delta \Gamma_s t/2) + A_s^{\Delta} \sinh(\Delta \Gamma_s t/2) \right]$$

$$A_s^{\Delta} \approx \sin 2\psi \cos 2\phi \approx \sin 2\psi$$

$$\tan \psi = \left| \frac{A(\overline{B}_s \to \phi \gamma_R)}{A(\overline{B}_s \to \phi \gamma_L)} \right|^{SM} \approx 0.1$$

- Decay described by proper-time (t) but not by tagging
- Reliable theoretical prediction at NNLO

LHCb THCb

$B_c \rightarrow \phi \gamma$ through the trigger: γ and hadron alley

Photon alley:

eff*: ~72%

 $-E_{\tau}(\gamma)$ > 2.3 GeV, $E_{\tau}(e)$ > 2.6 GeV, $E_{\tau}(\pi^{0})$ > 4.3 GeV

Hadron alley: E, > 3.5 GeV

eff*: ~36%

LO efficiency: ~82%

Photon alley = photon + 1 or 2 track(s):

eff*:~60%

- fast p^o/y separator algorithm
- track: requirements on p_{τ} , IP distance, vertex quality

Hadron alley

eff*:~15%

LO x Hlt1 efficiency: ~60%

Exclusive $B_s \rightarrow \phi \gamma$ line:

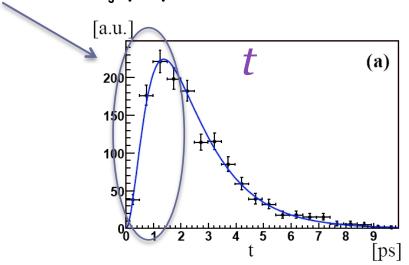
eff*: ~88%

- offline selection procedure with relaxed cuts

Inclusive phi alley:

eff*: ~83%

 $-P_{\tau}$ (K and ϕ) and PID, IP, mass window


LO x Hlt1 x Hlt2 efficiency: ~57%

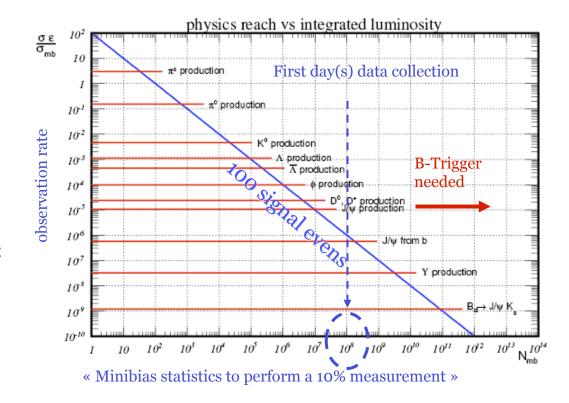

^{*} on offline selected events (which passed LO (+ Hlt1) trigger)

Distortion of the proper-time distribution

- ullet Both trigger selection and offline selection cut on IP distance of ϕ to reduce the prompt background.
- Affects the B_s proper-time distribution

- Acceptance function: $\varepsilon = \varepsilon(t)$
 - Use control sample $B^0 \rightarrow K^*(K^+\pi^-)\gamma$
 - Follows the same trigger flow as the signals.
 - · Statistics are ~factor 6 higher.

2 fb⁻¹ Expect 11x10³ selected signal events stat. error on $A^{\Delta} = ^{\sim}0.2$


Belle [1]: 18⁺⁶-5 signal events on 24 fb⁻¹ BF (B_s $\rightarrow \phi \gamma$)= 57⁺¹⁸₋₁₅(stat)⁺¹²₋₁₁(syst) 10⁻⁶ [1]PRL 100, 121801 (2008)

K. Vervink 17/07/09

Trigger during first data

Trigger settings has to allow for trigger commissioning

- Random event selector trigger
 - Monitor the distributions at LO entrance
- 2. LO trigger + Random event selector in HIt1:
 - Monitor the distributions of variables we will cut on in Hlł
- Events passing the full trigger:
 - Monitor the online environment using offline reconstruction
 - Trigger efficiencies vs. offline

K. Vervink 17/07/09

Summary

- Critical aspect of LHCb is isolating rare decays in the LHC environment.
- Trigger consist of
 - a hardware trigger which search for high P_{τ} events.
 - and a software "High Level Trigger" based on software algorithms in a CPU farm.
- Trigger efficiencies of 80% and 60% for B⁰→K*μμ and B, $\rightarrow \phi \gamma$ respectively are obtained.
- With control samples we can study and correct for the introduced biases on acceptance function or lifetime distribution.
- Finally strategy for trigger commissioning is discussed

We are ready for data...

Other LHCb talks at EPS

- Commissioning and performance of LHCb vertex detector (T. Bowcock)
 - IV Detectors & accelerators Thursday 16th at 10h00
- Measurements of CP violation and CKM matrix at LHCb (M. Calvi)
 - II Flavour Physics Thursday 16th at 11h30
- New Physics sensitivity of the rare decay mode B->Kl⁻l⁺ (T. Hurth)
 - II Flavour Physics Friday 17th at 9h30
- Search for New Physics at LHCb: CP violation in Charm sector and rare decays of B hadrons (M. H. Schune)
 - II Flavour Physics Friday 17th at 10h00
- Nonleptonic charmless Bc decays and their search at LHCb (S. Descotes Genon)
 - II Flavour Physics Saturday 18th at 10h05
- LHCb (A. Golutvin) -
 - Plenary session Wednesday 22nd at 14h30