

Combination of H1 and ZEUS Deep Inelastic e[±]p Scattering Cross Section Measurements and NLO-QCD Fit Analysis

EPS 2009 Voica A. Radescu

(DESY)

On behalf of the H1 and ZEUS Collaborations

HERA Structure Function Working Group

Outline:

- Introduction
- Data Sets and Combination
- NLO QCD Fit Analysis
- Results and Comparisons
- Summary

- HERA is an *ep* collider at DESY
 - o In operation for 15 years until June 2007
- 4 experiments:
 - o Fixed Target: HERMES and HERA-B
 - o Collider: H1 and ZEUS

general purpose detectors

HERA-I	1992-2000	Ep=820,920 GeV
HERA-II	2003-2007	Ep=920,460,575 GeV

Only HERA-I data is used in this analysis (~ 115 pb⁻¹ of integrated luminosity per experiment)

Introduction

MOTIVATION

- produce a more consistent and precise cross section measurement to be used in QCD analysis to extract precise HERA PDF sets
 - New HERA PDF to complete the HERA I inclusive data!
- DATA SETS:
 - ➡ Published HERA-I inclusive NC and CC DIS data (1994-2000)
 - 1% precision for the combined data in the 10-100 GeV² region

Data Se	et	x rat	nge	$ Q^2$ 1	range	$ $ \mathcal{L}	\sqrt{s}			
				Ge	eV^2	$ pb^{-1} $	${ m GeV}$	2	5	
H1 svx-mb	95-00	5×10^{-6}	0.02	0.2	12	2.1	301-319	Ø		*
H1 low Q^2	96-00	2×10^{-4}	0.1	12	150	22	301-319	10	4	51x25 points
H1 NC	94-97	0.0032	0.65	150	30000	35.6	301	BO		* *** * *
H1 CC	94-97	0.013	0.40	300	15000	35.6	301		3	
H1 NC	98-99	0.0032	0.65	150	30000	16.4	319			
H1 CC	98-99	0.013	0.40	300	15000	16.4	319		2	
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	319		2	
H1 NC	99-00	0.00131	0.65	100	30000	65.2	319			· · · · · · · · · · · · · · · · · · ·
H1 CC	99-00	0.013	0.40	300	15000	65.2	319		1	
ZEUS BPT	97	6×10^{-7}	0.001	0.045	0.65	3.9	301]		
ZEUS BPC	95	2×10^{-6}	6×10^{-5}	0.11	0.65	1.65	301		0	
ZEUS SVX	95	1.2×10^{-5}	0.0019	0.6	17	0.2	301			
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	301		-1	
ZEUS NC	96-97	$6 imes 10^{-5}$	0.65	2.7	30000	30.0	301			*"
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	319		-2	
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	319		-	7 -6 -5 -4 -3 -2 -1 0
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	319			$\log_{10} x$
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	319			

Data Combination Strategy

- Swim all points to a common x-Q² grid
- Move 820 GeV data to 920 GeV p-beam energy
- Calculate average values and uncertainties [arXiv:0904.0929]
- Evaluate "procedural uncertainties"

The combination of data uses the χ^2 minimisation method

Additive error sources:

$$\chi^2_{\exp}(\boldsymbol{m}, \boldsymbol{b}) = \sum_i \frac{\left[m^i - \sum_j \Gamma^i_j b_j - \mu^i\right]^2}{\Delta_i^2} + \sum_j b_j^2$$

Multiplicative error sources:

> small biases to lower cross sections values avoided by a modified χ^2 definition

$$\chi^{2}_{\exp}(\boldsymbol{m},\boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma^{i}_{j} m^{i} b_{j} - \mu^{i}\right]^{2}}{\delta^{2}_{i,\text{stat}} \left(m^{i} - \sum_{j} \gamma^{i}_{j} m^{i} b_{j}\right) + \left(\delta_{i,\text{uncor}} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}.$$

- o Measured central values
- o Relative correlated systematic uncertainties
- o Relative statistical uncertainties
- o Relative uncorrelated systematic uncertainties

$$\mu_{i}$$

$$\gamma_{i}^{i} = \Gamma_{i}^{i} / \mu^{i}$$

$$\delta_{i,\text{stat}} = \Delta_{i,\text{stat}} / \mu^{i}$$

$$\delta_{i,\text{uncor}} = \Delta_{i,\text{uncor}} / \mu^{i}$$

Data Combination Strategy

- Swim all points to a common x-Q² grid
- Move 820 GeV data to 920 GeV p-beam energy
- Calculate average values and uncertainties
- Evaluate "procedural uncertainties"
 - 1. Additive vs Multiplicative nature of the error sources
 - o typically below 0.5%

A general study of the possible correlated systematic uncertainties between H1 and ZEUS has been performed:

- Identified 12 possible uncertainties of common origin
- Compare 2¹² averages taking all pairs as corr./uncorr. in turn.

Mostly negligible except for:

- 2. Correlated systematic unc. for the <u>photoproduction background</u> o few % only at high-y
- 3. Correlated systematic unc. for the hadronic energy scale
 - o at the ‰ level

Resulting Averaged HERA I Data

- 1402 points are combined to 741 unique cross section measurements
 - χ^2 /ndf = 637/656
 - 110 systematic sources from separate experiments and 3 from the combining procedure
- Overall precision improved:
 - For 3<Q²<500 GeV²
 - 2% precision
 - For 20<Q²<100 GeV²
 - 1% precision >

H1 and ZEUS Combined Data x=0.002

Resulting Averaged HERA I Data

- 1402 points are combined to 741 unique cross section measurements
 - $\chi^2 / ndf = 637/656$
 - 110 systematic sources from separate experiments and 3 from the combining procedure
- Overall precision improved:
 - For 3<Q²<500 GeV²
 - > 2% precision
 - For 20<Q²<100 GeV²
 - > 1% precision

	•	Combined	HERA	I Data	is a	sole	input	in the	e fit!
--	---	----------	------	--------	------	------	-------	--------	--------

- NLO predictions using DGLAP equations in MS
 - QCDNUM17.02 (M. Botje): can do NNLO fits
 - Starting scale $Q_0 < M_c$
- Structure Function calculations in General-Mass Variable Flavour Number Scheme (GMVFNS)
 - > Thorne-Roberts VFNS 2008
 - An improved theoretical treatment of heavy quarks which takes the quark masses into account

Scheme	TRVFNS
Evolution	QCDNUM17.02
Order	NLO
Q_0^2	$1.9 { m GeV^2}$
$f_s = s/D$	0.31
Renorm. scale	Q^2
Factor. scale	Q^2
Q_{min}^2	$3.5 ~{ m GeV^2}$
$lpha_S(M_Z)$	0.1176
M_c	$1.4 {\rm GeV}$
M_b	$4.75~{ m GeV}$

Parametrisation form of the PDFs: gluon, u_{val} , $\overline{U} = \overline{u} + \overline{c}$, $\overline{D} = \overline{d} + \overline{s} + \overline{b}$

 $xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$

The optimum number of parameters chosen by saturation of the χ^2 (i.e. only parameters that significantly contribute to χ^2 are let to vary)

> 10 free parameters for central fit! > $\chi^2/dof=576/592$

PDF	A	В	С	D	E
xg	sum rule	FIT	FIT	-	-
xu_{val}	sum rule	FIT	FIT	-	FIT
xd_{val}	sum rule	$=B_{u_{val}}$	FIT	-	-
$x\overline{U}$	$\lim_{x\to 0} \overline{u}/\overline{d} \to 1$	FIT	FIT	-	-
$x\overline{D}$	FIT	$=B_{\overline{U}}$	FIT	-	-

Experimental uncertainties

- rightarrow consistent data, therefore use tolerance $\Delta \chi^2 = 1$
- 110 systematic errors are combined in quadrature with the statistical errors and 3 sources of errors from the averaging procedure are offset.
 - > Small effects observed when errors are treated as correlated
- Model uncertainties
 - Obtained by varying the input assumptions

Variation	Central	Lower	Upper
m_b	4.75	4.3	5.0
Q_{min}^2	3.5	2.5	5.0
f_s	0.31	0.23	0.38
m_c	1.4	1.35	1.5
Q_0^2	1.9	1.5	2.5

- PDF parametrisation uncertainty $[\rightarrow J.Terron's talk]$
 - alternative parametrisations with similar or better χ^2 which have been discarded due to additional optimisation requirements:
 - Reasonable shape for valence and sea distributions at high-x
 - > All PDFs >0
 - ➡ Envelope of all these fits is formed and used as PDF parametrisation error
 - > 7 fits out of all possible 11 parameter fits obtained by adding one additional parameter to the central fit parametrisation choice were used for the envelope
- Study variation of the strong coupling
 - > αS(Mz)=0.1176 ± 0.0020 [PDG]

Fit Results: HERAPDF0.2

χ^2 /dof = 576/592

Plot show the extended kinematic range of HERA data as compared to fixed target measurements

H1 and ZEUS Combined PDF Fit

- High-x and valence are mostly affected by the PDF parametrisation uncertainty
 - Procedure addresses only high-x region!
 - Low x region is being investigated

HERAPDF0.2 vs CTEQ/MSTW

 We compare HERAPDF0.2 to the global fits (at 68% CL)
 The new combined HERA-I data provides a strong constraint on PDFs CTEQ6.6
 MSTW08

Impact of HERA at the LHC

Impressive precision on the low-x sea and gluon of the HERAPDF0.2 is relevant for W,Z production at the LHC

- > The errors include only the experimental uncertainties!
- \blacksquare Uncertainty at central rapidities when using combined HERA data~1%!
- Inclusion of HERA data shows the tremendous improvement on the predictions for W and Z production at the central rapidity.

- A model-independent averaging method has been developed to combine the H1 and ZEUS NC and CC cross sections (HERA-I)
 - This results in a consistent data set with significantly reduced systematic and statistical uncertainties
- This combined data is used to perform a new NLO QCD analysis resulting in HERAPDF0.2:
 - Improved theoretical treatment for heavy flavours (TR-VFNS)
 - > Model and PDF parametrisation uncertainties are considered

➡ HERA data is getting ready for precise predictions at the LHC!

Backup

HERAPDF0.2 vs CTEQ/MSTW

 We compare HERAPDF0.2 to the global fits (at 90% CL)
 The new combined HERA-I data provides a strong constraint on PDFs CTEQ6.6
 MSTW08

Data Combination Strategy

- Swim all points to a common x-Q² grid
- Move 820 GeV data to 920 GeV p-beam energy
- Calculate average values and uncertainties
- Evaluate "procedural uncertainties"
 - The grid points are chosen so that the interpolation corrections are minimal
 - Prior combination, H1 and ZEUS data transformed to common x-Q² grid using a theoretical calculation

$$\sigma_{NC,CC}^{e^{\pm}p}(x_{grid}, Q_{grid}^2) = \frac{\sigma_{NC,CC}^{th,e^{\pm}p}(x_{grid}, Q_{grid}^2)}{\sigma_{NC,CC}^{th,e^{\pm}p}(x, Q^2)} \sigma_{NC,CC}^{e^{\pm}p}(x, Q^2)$$

Data Combination Strategy

- Swim all points to a common x-Q² grid
- Move⁽¹⁾ 820 GeV data to 920 GeV p-beam energy
- Calculate average values and uncertainties
- Evaluate "procedural uncertainties"
- (1) Except for data points with y > 0.35

The averaged cross sections have been obtained after having corrected all E_p =820 GeV (with y < 0.35) data points to E_p =920 GeV

$$\begin{aligned} \mathsf{CC} \qquad & \sigma_{CC\ 920}^{e^{\pm}p}(x,Q^2) = \sigma_{CC\ 820}^{e^{\pm}p}(x,Q^2) \frac{\sigma_{CC\ 920}^{th,e^{\pm}p}(x,Q^2)}{\sigma_{CC\ 820}^{th,e^{\pm}p}(x,Q^2)} \\ \mathsf{NC} \qquad & \sigma_{NC\ 920}^{e^{\pm}p}(x,Q^2) = \sigma_{NC\ 820}^{e^{\pm}p}(x,Q^2) + \Delta\sigma_{NC}^{e^{\pm}p}(x,Q^2,y_{920},y_{820}). \end{aligned}$$

$$\Delta \sigma e^{\pm} p_{NC}(x, Q^2, y_{920}, y_{820}) = F_L(x, Q^2) \left[\frac{y_{820}^2}{Y_{820}^+} - \frac{y_{920}^2}{Y_{920}^+} \right] + x F_3(x, Q^2) \left[\pm \frac{Y_{820}^-}{Y_{820}^+} \mp \frac{Y_{920}^-}{Y_{920}^+} \right]$$

Experimental Uncertainties

Uncorrelated uncertainties:

→E.Tassi's talk

- Statistical errors
- Poin-to-point uncorrelated uncertainties:
 - > e.g statistical errors due to MC simulations
 - > Are added in quadrature to the statistical errors
- Correlated uncertainties:
 - Point-to-point correlated uncertainties
 - > e.g. electromagnetic and hadronic energy scale calibration
 - > Often common for CC and NC for a given experiment and run period
- Overall normalisation uncertainty:
 - Correlated for all data points for a given experiment and run period
- Correlations between H1 and ZEUS:
 - ➡ H1 and ZEUS use similar analyses methods
 - largest from photo-production MC and hadronic energy scales

There are 110 systematic errors which are combined in quadrature with the statistical errors and 3 sources of errors from the averaging procedure are offset.

Small effects observed when errors are treated as correlated

HERAPDF0.1 vs HERAPDF0.2

- For consistency, when comparing the HERA PDF sets only the experimental errors are used:
 - The model uncertainties of the two PDF sets are not identical
 - ➡ HERAPDF0.1 did not consider the uncertainty due to PDF parametrisation

Include all PDF uncertainties

Include all PDF uncertainty ~2%

Uncertainties: Data: red Model : yellow Param.: green

Note the increase in uncertainty at large |rapidity| <> large x

HERAPDF0.2 for different scales

- At the starting scale gluon is valence like
 - $> Q_0^2$, Q_{min}^2 dominate the model uncertainty of gluon and valence PDFs
- PDF parametrisation uncertainty dominates valence PDFs and high x region

H1 and ZEUS Combined PDF Fit

Krakow, EPS 2009

Near the starting scale gluon is valence like

The model uncertainties are large in low x region

> Mostly due to Q_0^2 variations

- The PDF param. uncertainty dominates high x
- Impressive precision at higher Q²!

