The Europhysics Conference on High Energy Physics, 16-22 July, Krakow

Leading Baryon Production at HERA

Vitaliy Dodonov, MPI für Kernphysik, Heidelberg On behalf of the H1 and ZEUS Collaborations

Outline:

- Leading proton production in DIS. (ZEUS Collaboration)
- Leading neutron production in DIS. (H1 Collaboration)
- Leading neutron in dijet photoproduction. (ZEUS Collaboration)

Introduction

- Significant fraction of *ep* scattering events contain a leading proton or leading neutron (LB) in the final state carrying a substantial portion of the energy of the incoming proton: $e+p \rightarrow e+LB+X$
- Different production models are available

Leading baryon can come from "standard fragmentation"

• implemented in MC models (Lund String)

Leading baryon can be produced via exchange of virtual particle:

- leading protons: IP, IR, π_0 (isoscalar + isovector)
- leading neutrons: π⁺, ρ⁺, a₂
 (isovector)

Kinematics and Factorisation

Lepton variables:

$$Q^2 = -(k-k')^2$$

 $x = Q^2/(2Pq)$
 $y = s/(xQ^2)$

Leading baryon variables:

$$x_{L} = E_{LB}/E_{p}$$

$$t = (P-P_{LB})^{2} \text{ (or } p_{T}^{2})$$

In the exchange model the cross sections factorise, e.g. for one pion exchange (OPE)

$$\sigma(ep \to e'NX) = f_{\pi/p}(x_L, t) \times \sigma(e\pi \to e'X)$$

$$f_{\pi/p}(x_L, t) - \text{pion flux:} \qquad \sigma(e\pi \to e'X) - \text{cross-section of em scattering}$$

- probability to emit pion from the proton with given x_L , t
 - LB production independent of photon vertex
 - probe structure of exchanged particle
 - models predict factorisation violation rescattering

Detectors used for measurement of LB

position resolution 2-3mm

Acceptance limited by beam apertures and detector size. p_T resolution is dominated by p_T spread of proton beam (50-100 MeV).

Leading Proton production in DIS

(DESY- 08 - 176, to be published in JHEP)

$d\sigma_{LP}/dx_L$ normalised to the inclusive DIS cross section

 12.8 pb^{-1} $Q^2 > 3 \text{ GeV}^2$ $p_T^2 < 0.5 \text{ GeV}^2$ 45 < W < 225 GeV $x_L > 0.32$

- clear diffractive peak at $x_L \rightarrow 1$
- proton yield flat below $x_L \approx 0.95$
- consistent with earlier low Q^2 data

Comparison LP, LN yields

- Restricted to a common p_T^2 range where the detector acceptances overlap
- For pure isovector (e.g. pion) particle exchange one expects:

$$LP = \frac{1}{2} LN$$

• Data suggest:

$$LP = 2 LN$$

Additional IR contributions are needed to account for the observed LP rates

P_T^2 distributions in x_L bins

ZEUS

- clear different trends for LP and LN
- similar slopes for $x_L \approx 0.65\text{-}0.8$

Rates to inclusive DIS

 $r^{LP(2)}$ is approximately constant vs x and Q^2 with average value $\sim 0.24\,$

Structure function $F_2^{LP(2)}$

$$\frac{d^2 \sigma(\operatorname{ep} \to \operatorname{eXp})}{dx \, dQ^2} = \frac{4 \pi \, \alpha^2}{x \, Q^4} \left[1 - y + \frac{y^2}{2} \right] \cdot F_2^{\operatorname{LP}(2)}(x, Q^2)$$

same trend as inclusive F₂ is observed

Comparison to models

Standard fragmentation MC

- good description of diff. peak but all fail at low $\mathbf{x}_{\scriptscriptstyle L}$
- slopes are too low at low x_L

Model with multiple exchanges

- good description of LP yield and slope by adding different exchanges
- reggeon dominant at medium x_L

Leading Neutron production in DIS

LN production in DIS:

Triple differential reduced cross section

$$\frac{d^3\sigma(ep \to enX)}{dQ^2 dx dx_L} =$$

$$= \frac{4\pi\alpha^2}{xQ^4} \left[1 - y + \frac{y^2}{2} \right] \cdot F_2^{LN}(Q^2, x, x_L)$$

$$\begin{array}{l} 122 \text{ pb}^{-1} \\ 6 < Q^2 < 100 \text{ GeV}^2 \\ p_T^{-2} < 0.04 \text{ GeV}^2 \\ 0.32 < x_L < 0.95 \end{array}$$

- DJANGO (standard fragmentation) predicts too low cross section, also x_L spectrum shape is too different
- RAPGAP π^+ -exchange describes data well for $x_1 > 0.7$
- Mixture of the DJANGO and the RAPGAP MC's can be used to describe data in the whole kinematic region

LN production in DIS:

$F_2^{LN}(Q^2,x,x_L)$ to $F_2(Q^2,x)$ ratio

F₂(Q²,x) from the H1 parameterisation (Eur.Phys.J.C21 (2001) 33)

F₂^{LN}(Q²,x,x_L)/F₂(Q²,x)
is mostly flat in Q² and x
=> similar to the Leading
Proton measurement

In the π -exchange picture leading neutron production cross section can be expressed as the product of the pion flux and the pion structure function $F_2^{\ \pi}$ from the measured $F_2^{\ LN}$:

$$\sigma_{ep \to enX}(\beta, Q^2, x_L, t) = f_{\pi^+/p}(x_L, t) \times \sigma_{e\pi \to eX}(\beta, Q^2), \text{ where } \beta = x/(1-x_L)$$

Assuming that pion exchange is dominating at $x_L \approx 0.7$ and $p_T < 0.2$ GeV we can estimate $F_2^{\ \ T}$ from the $F_2^{\ \ LN(3)}$ measurement according to:

$$F_2^{\text{LN}(3)}(\beta, Q^2, x_{\text{L}}) = \Gamma_{\pi}(x_L) \times F_2^{\pi}(\beta, Q^2)$$

where Γ_{π} is integrated over t pion flux

Using pion flux
$$f_{\pi^+/p} = \frac{1}{2\pi} \frac{g_{p\pi n}^2}{4\pi} (1 - x_L) \frac{-t}{(m_{\pi}^2 - t)^2} \exp\left(-R_{\pi n}^2 \frac{m_{\pi}^2 - t}{1 - x_L}\right)$$
 \Longrightarrow at $x_L = 0.73$ $\Gamma_{\pi} = 0.131$

(other pion flux form-factors give other values of $\Gamma_{\pi} =>$ global normalisation factor on $\mathbf{F_2}^{\pi}$)

No background subtraction or absorption correction applied

LN production in DIS:

Pion Structure Function from F₂^{LN}

Data compared to parameterisations:

- 2/3 of proton F_2
- GRV- π LO (revisited)
- ABFKW-π Set 1 NLO

The F_2^{π} exhibits a rise with Q^2 (i.e. scaling violation) and steep rise with decreasing β . Similar to pion and proton structure functions parameterisations.

Leading Neutron with Dijet in photoproduction

Dijet photoproduction with LN

40 pb⁻¹, Q² < 1 GeV²,
$$p_T^2$$
 < 0.475 x_L^2 GeV², x_L > 0.2, E_T^{jet1} > 7.5 GeV, E_T^{jet2} > 6.5 GeV, -1.5 < $\eta^{jet1,2}$ < 2.5

Absorption effects increase from high $Q^2 \Rightarrow \gamma p$

i.e. hard => soft scale

A hard scale in γp can be introduced by requiring high $E_{\rm T}$ jets

Differential cross sections

$$W-total\ energy\ of$$

$$photon-proton\ system$$

$$x_{\gamma}=\Sigma_{jets}(E-p_z)/(2yE_e)$$

$$x_p=\Sigma_{jets}(E+p_z)/(2E_p)$$

- strong dependence of ratio on x_{γ} (also on W, x_{p}).
- seems that resolved photon is suppressed in neutron events

p_T^2 distributions in x_L bins; slopes

ZEUS

Well described by exponential fall-off in p_T^2

$$\frac{1}{\sigma_{inc}} \frac{d\sigma_{LN}}{dp_T^2 dx_L} = a(x_L) \cdot e^{-b(x_L) p_T^2}$$

similar slopes in DIS and γp+dijet

=> Same production mechanism

Comparison with Models

- RAPGAP π -exchange only and PYTHIA-SCI describe data poor
- Pion exchange is dominating mechanism at high x_L

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 \mathbf{x}_{L}

• Full RAPGAP gives good description of data

P.D.F. parameters from $x_{\pi} > 0.1$ => OK also at lower x_{π}

- ◆ Protoproduction with jets is suppressed vs DIS at low x_L
 => consistent with rescattering models
- **◆** Effect not prominent in photoproduction with high E_T jets
- ◆ Phase space limitation: dijets in the final state leave little room for energetic high x_L neutrons

- o LN in DIS
- LN + JJ in γp
- ▲ LN in γp

Summary

Leading Baryons are good testing ground to study soft vs hard physics

- Precise measurements of LB x_L and p_T^2 presented in DIS, γp with dijets.
- Fragmentation MC-models without meson exchange do not describe the data.
- Models with virtual meson exchange describe data better.
- F_2^{LP}/F_2 and F_2^{LN}/F_2 ratios are independent of x and Q^2
- For LN production, pion structure F_2^{π} estimated and compared with parameterisations of pion structure function
- Reintroducing hard scale in γp with high E_T jets: absorption effect not prominent

Backup

Backup slides

HERA

The world's only electron/positron-proton collider at DESY, Hamburg.

 $E_e = 27.6 \text{ GeV}$, $E_p = 920 \text{ GeV}$ (also 820, 460 and 575 GeV). \sqrt{s} up to 320 GeV.

Two colliding experiments: H1 and ZEUS

Total lumi: 0.5 fb⁻¹ per experiment

• ZEUS: Leading Proton production in DIS:

12.8 pb⁻¹,
$$Q^2 > 3 \text{ GeV}^2$$
, $p_T^2 < 0.5 \text{ GeV}^2$, $x_L > 0.32$, $45 < W < 225 \text{ GeV}$

• H1: Leading Neutron production in DIS:

122 pb⁻¹, 6 GeV² < Q² < 100 GeV²,
$$p_T^2$$
 < 0.04 GeV², 0.32 < x_L < 0.95

ZEUS: Leading Neutron + Dijets in photoproduction:

40 pb⁻¹, Q² < 1 GeV²,
$$p_T^2$$
 < 0.475 x_L^2 GeV², x_L > 0.2, 130 < W < 280 GeV,

$$E_T^{jet1} > 7.5 \text{ GeV}, E_T^{jet2} > 6.5 \text{ GeV}, -1.5 < \eta^{jet1,2} < 2.5$$

DIS and γp have very different inclusive cross sections σ_{inc}

=> for sensible comparisons look at σ_{LB}/σ_{inc}

Additional benefit: systematic uncertainties of central detector cancel

=> Most measured by ZEUS LB cross sections are relative to inclusive ones

LN in dijet yp vs DIS: kinematic constraints

Consider X_{BP} = fraction of p-energy available for LN production

$$x_L < X_{BP} = 1 - (E + P_Z)/(2E_P)$$

 X_{BP} dist. is different in DIS and dijet γp :

much less energy available in dijet γp for LN production

For fixed X_{RP} , same LN rate and x_L spectrum

Reweight DIS LN x_L dist. to match the X_{RP} dist. in dijet γp

- \bullet suppression at high x_1 dist. mostly gone
- large suppression at low x_Lseen in γp without jets not there

Differences in the x_L spectra due to kinematic suppression.