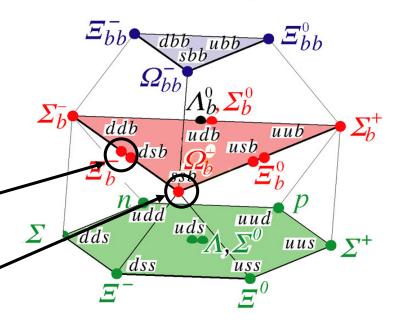


Observation of the Ω_b^- and Measurements of the Properties of the Ξ_b^- and Ω_b^-

Patrick T. Lukens Fermilab 18 July 2009


EPS 2009 - July, 2009

Baryon Ground States

- This is a report on b-baryon property measurements
 - Fully reconstructed states
- This analysis measures properties of two of the most recently observed b-baryons
 - $\geq \Xi_{\rm b}^{-}$, observed in 2007
 - D0: 15, CDF: 18
 - $\triangleright \Omega_{\rm b}$, observed by D0 in 2008
 - D0: 18

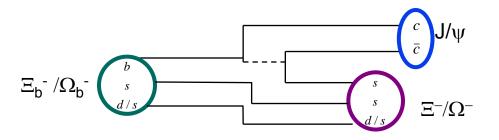
J = 1/2 b Baryons

 This analysis is described in arXiv:0905.3123.

B Hadron Program

- The data set is from our di-muon trigger
 - \rightarrow J/ $\psi \rightarrow \mu^{+}\mu^{-}$ in the final state
- We search for the Ξ_{b}^{-} and Ω_{b}^{-} through the processes

$$\triangleright$$
 $\Xi_{\rm b}^- \rightarrow {\rm J/\psi} \Xi^-, {\rm J/\psi} \rightarrow \mu^+\mu^-, \Xi^- \rightarrow \Lambda\pi^-$

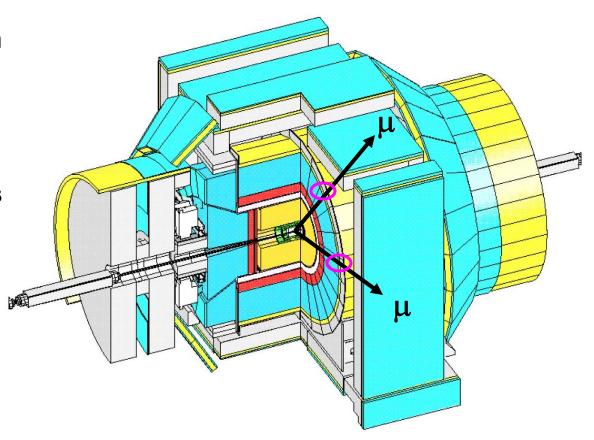

$$ightharpoonup \Omega_b^- o J/\psi \Omega^-, J/\psi o \mu^+\mu^-, \Omega^- o \Lambda K^-$$

- This data set contains many bmeson candidates
- Therefore, the mesons and $\Lambda_{\rm b}$ are used as references

$$\rightarrow$$
 B⁰ \rightarrow J/ ψ K*⁰, J/ ψ \rightarrow μ ⁺ μ ⁻, K*⁰ \rightarrow K⁺ π ⁻

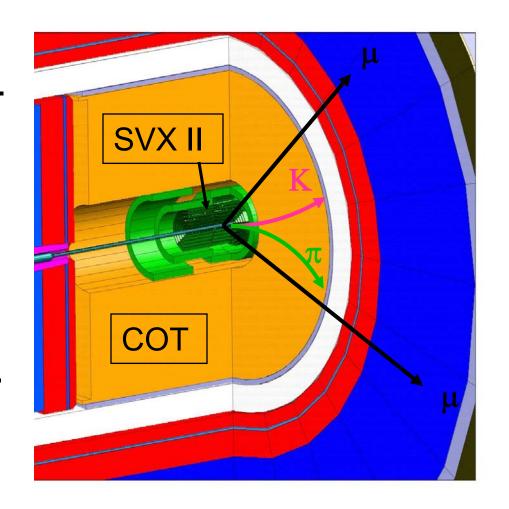
$$\rightarrow$$
 B⁰ \rightarrow J/ ψ K_s⁰, J/ ψ \rightarrow μ ⁺ μ ⁻, K_s⁰ \rightarrow π ⁺ π ⁻

$$\rightarrow \Lambda_{\rm b} \rightarrow {\rm J/\psi} \ \Lambda, \ {\rm J/\psi} \rightarrow \mu^{+}\mu^{-}, \ \Lambda \rightarrow p\pi^{-}$$

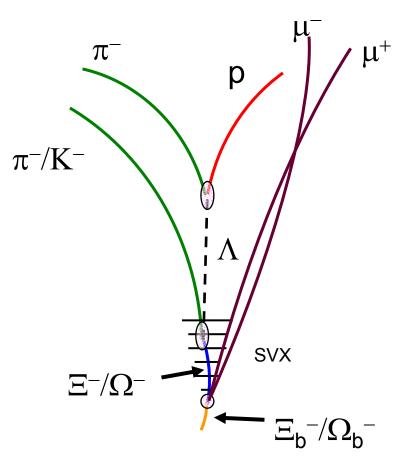


- The baryon program is a natural extension of a larger b-meson program
- Similar selection and techniques are used for all species.

The CDF II Detector


- The data used in this analysis was collected with the CDF II Detector.
 - This analysis uses data from 4.2 fb⁻¹.
- The trigger requires
 - Tracks in muon chambers
 - Tracks in the central tracking chamber (COT) (p_T>1.5 GeV)
 - $ightharpoonup 2.7 < M(\mu^+\mu^-) < 4.0 \text{ GeV/c}^2$
- Unbiased with respect to decay time for b-hadrons

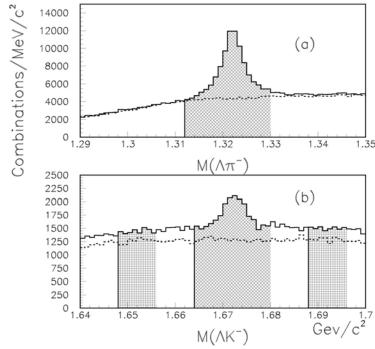
The CDF II Tracker


- Events that satisfy the trigger are fully analyzed.
- Track reconstruction identifies all tracks with p_T>0.4 GeV/c
- Three SVX II
 measurements are
 required for muon tracks.
 - \triangleright Not used for p/K/ π tracks

Ξ_b^-/Ω_b^- Reconstruction

- The $\Xi_{\rm b}^{-}/\Omega_{\rm b}^{-}$ reconstruction is complicated
 - > 5 tracks, 3 vertices
- Same techniques used for the neutrals can be applied
- Constrained fit is imposed on the final state
 - Constrains topology
 - \triangleright Constrains Λ , Ξ^{-}/Ω^{-} , and J/ψ masses
- The long life of the Ξ⁻ and Ω⁻ opens the possibility of using the silicon detector on the 6th track in the process.
 - Impact resolution improvement

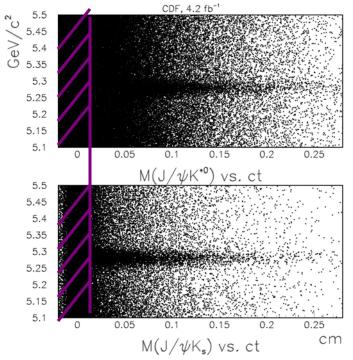
Inclusive Ξ^{-}/Ω^{-} Sample

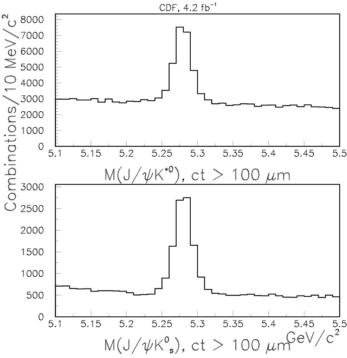

- The analysis is based data collected from 4.2 fb⁻¹ of collisions.
- Yields in the full sample

 $> J/\psi : 2.9 \times 10^7$

> Λ: 3.6×10⁶

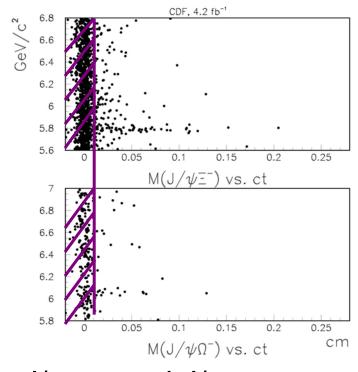
> E⁻: 41,000


 $\triangleright \Omega^{-}$: 3,500

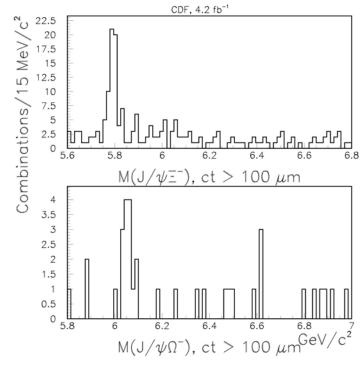


- Dashed histograms are Λπ⁺/K⁺
- Shaded are selection and sideband regions

b-meson signals at CDF

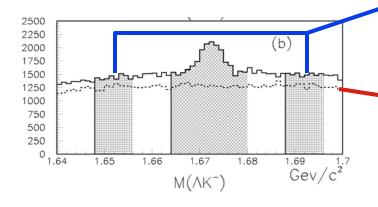


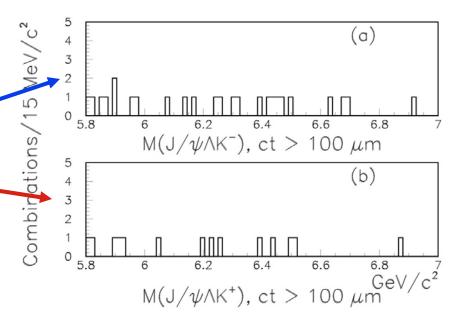
- Decay time selects B hadron signals from the prompt background
 - > ct > 100 μm requirement removes most prompt background



b-baryon signals at CDF

- \rightarrow p_T(B) > 6 GeV/c
- $ightharpoonup p_{T}(\Xi^{-}/\Omega^{-}) > 2 \text{ GeV/c}$
- \triangleright Good fit with J/ ψ mass constraint EPS 2009 July, 2009

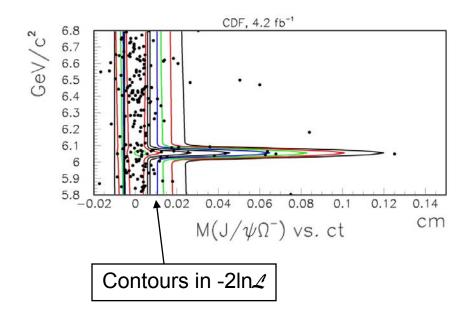

- Obvious Ξ_b- signal when ct > 100 μm
- Cluster in the J/ ψ Ω around 6.05 GeV/c² test its significance


Where we expect nothing...

For the same candidate selection, except for

The ΛK⁻ mass

The "wrong sign" distribution



 Neither shows any features anywhere

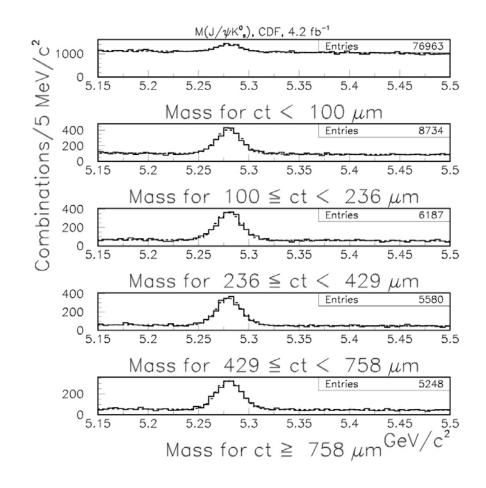
Ω_b Significance – Mass/Decay Time Distribution Test

- Significance test ratio of likelihoods of the mass-decay time distribution.
 - P.D.F in mass is Gaussian signal and a flat background.
 - P.D.F. in time is resolution smeared
 - Exponential(τ_0) for signal
 - Exponential(τ_b) for b-background
 - Delta function for prompt background
 - Fit freely, and with the null hypothesis
 - $\rightarrow \Delta 2 \ln \mathcal{L} = 37.3$

Interpreted as P(χ²) with 3 d.o.f. (amp., mass, life) = 4.0×10⁻⁸, => 5.5σ

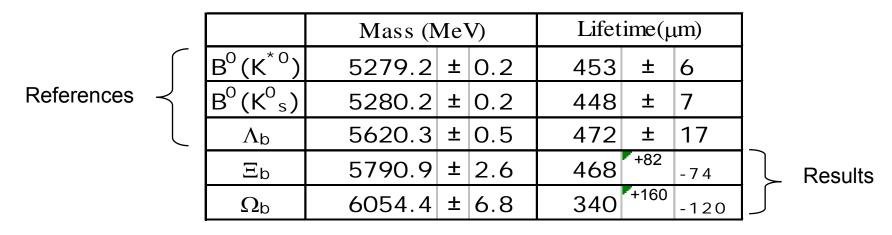
Mass, Lifetime and Yield Measurements

- A binned lifetime fit makes us insensitive to the background lifetime
 - Demonstrated on the full B⁰→J/ψK⁰_s sample.
 - Bin boundaries are indicated.
 - ~20% area in each time range
 - Projections of the mass fits are overlaid on the data.
- Fit results -


Yield: 9424 ± 167

Mass: 5280.2 ± 0.2 MeV/c²

PDG: 5279.53 ± 0.33 MeV/c²


 $> c \tau_0$: 448 ± 7 µm

- PDG: 459 ± 3 μm

Mass and Lifetime Results

- 2.0 MeV/c² shift in Ξ_b^- mass from 1.9 fb⁻¹ measurement
 - > PRL 99,052002(2007)
- Systematic uncertainty on mass 0.8 (Ξ_b^-) and 0.9(Ω_b^-) MeV/c²
- Systematic uncertainty on lifetime 1.3% overall

Production Rate Measurements

- We have access to the product of cross section times branching fraction.
 - ightharpoonup We will measure ratios, with respect to the Λ_b^0 : $\overline{\sigma B(\Lambda_b \to J/\psi \Lambda)}$
 - Only other b-baryon with a large sample

- $\frac{\sigma B(\Xi_b^- \to J/\psi \Xi^-)}{\sigma B(\Lambda_b^- \to J/\psi \Lambda)}$ $\sigma B(\Omega_b^- \to J/\psi \Omega^-)$
 - $\frac{\partial B(\mathfrak{L}_b \to J/\psi\mathfrak{L}_2)}{\partial B(\Lambda_b \to J/\psi\Lambda)}$

- Our approach
 - Obtain acceptance vs. p_T from simulation
 - \triangleright Cross section of Ξ_{b}^{-} and Ω_{b}^{-} is p_{T} dependent
 - Assume it has the same dependence as $\Lambda_{\rm b}{}^{\rm 0}$
 - ▶ Use measured Λ_b^0 production to integrate Ξ_b^- and Ω_b^- acceptance over p_T (6-20 GeV/c).
 - No $\Xi_{\rm b}^{-}$ or $\Omega_{\rm b}^{-}$ candidates above 20 GeV/c

Rate Results

	Acceptance (6-20 GeV) * 10 ⁻³			Yield	
$\Lambda_{b}{}^{O}$	31	±	2	1812	± 61
Ξb	6.7	±	0.2	66	+14 - 9
Ω_{b}^{-}	9	±	0.3	16	+6 - 4

- Total systematic uncertainty of 7% for Ξ_b^- , 9% for Ω_b^-
- Yields, acceptances, and known branching fractions are combined to give

$$\frac{\sigma B(\Xi_b^- \to J/\psi \Xi^-)}{\sigma B(\Lambda_b^0 \to J/\psi \Lambda)} = 0.167^{+0.037}_{-0.025}(stat.) \pm 0.012(syst.)$$

$$\frac{\sigma B(\Omega_b^- \to J/\psi \Omega^-)}{\sigma B(\Lambda_b^0 \to J/\psi \Lambda)} = 0.045^{+0.017}_{-0.012}(stat.) \pm 0.004(syst.)$$

Conclusions

- CDF observes the process $\Omega_b^- \to J/\psi \Omega^-$
 - \triangleright Simultaneous mass and decay time fit => 5.5 σ significance.
- Properties of both Ξ_{b}^{-} and Ω_{b}^{-} have been measured:

	Mass (MeV/c ²)	το(ps)	$\sigma B/\sigma B(\Lambda_b^0)$	
Ξb	5790.9 ± 2.6 ± 0.9	1.56 ^{40.27} -0.25 ± 0.02	$0.167^{+0.037}_{-0.025}$ ± 0.012	
Ω_{b}^{-}	6054.4 ± 6.8 ± 0.9	1.13 +0.53 _{-0.40} ± 0.02	$0.045^{0.017}_{-0.012} \pm 0.004$	

- Masses new level of precision
- Lifetimes first Ω_b^- , first fully reconstructed Ξ_b^-
- These strange b-baryons are simply additional members of a rich program of fully reconstructed b-hadrons obtained in the CDF J/ψ sample.