Status of the XENON100 experiment for WIMP direct detection

Alfredo Davide Ferella
University of Zurich (UZH)

The 2009 Europhysics Conference on High Energy Physics
Krakow, 16-22 July 2009
Dark Matter Direct Detection

- **COUPP PICASSO**
- **CDMS EDELWEISS**
- **CRESST ROSEBUD**
- **GERDA MAJORANA ConGeNT**
- **XENON LUX, ZEPLIN WARP, ArDM**
- **DEAP/CLEAN DAMA, KIMS XMASS**

Legend:
- Atoms 4.6%
- Dark Energy 72%
- Dark Matter 23%

Source: NASA/WMAP
Double phase TPC

- Primary scintillation signal (S1)
- Electrons drift over 30 cm max distance
- Electrons are extracted and accelerated generating secondary scintillation signal
- The time difference between the two signals gives information on event position in z
Why Liquid Xenon?

✓ large mass (ton scale)
✓ easy cryogenics
✓ low energy threshold (a few keV)
✓ $A \sim 131$ (good for SI)
✓ $\sim 50\%$ odd isotopes (SD)
✓ background suppression
 • good self shielding features ($\sim 3 \text{ g/cm}^3$)
 • low intrinsic radioactivity
 • gamma background discrimination
 • position sensitive (TPC mode)

WIMP Scattering Rates

$M_\chi = 100 \text{ GeV}, \sigma_{\chi-p} = 10^{-45} \text{ cm}^2$
The Collaboration

~50 people from 10 institutions

Columbia
E. Aprile

Rice
U. Oberlack

UCLA
K. Arisaka
H. Wang

U Zürich
L. Baudis

Coimbra
J.A.M Lopes

LNGS
F. Arneodo

Subatech
D. Thers

Münster C.
Weinheimer

Waseda
N. Hasebe

SJTU
K. Ni
Xenon100: design

- ~170 kg total / ~65 kg target LXe (15 cm radius, 30 cm drift)
- Active LXe veto – improved shield (Pb, Poly, Cu, N2 purge)
- New high QE (>32%@175nm) low activity 1” R8520 PMTs (total 242 PMTs)
- Cryocooler and feed-through outside the shield
Xenon100: Data Acquisition

- CAEN V1724 100 MHz digitizer (14 bit resolution)
- Circular buffer -> dead time free
- Integrated FPGA for zero length encoding
- Slow control to monitor the detector crucial parameters
- sms alarms are sent to people on shift in case of emergency
Xenon100: Data Acquisition

- CAEN V1724 100 MHz digitizer (14 bit resolution)
- Circular buffer -> dead time free
- Integrated FPGA for zero length encoding

- Slow control to monitor the detector crucial parameters
- sms alarms are sent to people on shift in case of emergency
Xenon100: PMT light calibration

4 optical fibers
Xenon100: Position reconstruction

3 different methods for xy position reconstruction:
- neural network
- support vector machine
- Least squares minimization
Xenon100: Position reconstruction

Very localized S2 hit pattern (xy position information)

drift time -> z

3 different methods for xy position reconstruction:
neural network
support vector machine
Least squares minimization
Xenon100: light yield and electron lifetime

Light yield reached the maximum in few days

Electron lifetime longer than the total drift length

(started 5/9/09, after earthquake)

- Recirculation in gas phase 10 SLPM
- Hot getter (SAES) for impurity removal
Xenon100: gamma calibration

Calibration data are being taken every day in order to check detector performances, stability and purity evolution.
Xenon100: goals

- Improve the sensitivity ~ 50 times over XENON10.
- Assuming same energy threshold and same discrimination power as XENON10, the required background in the fiducial volume needs to be 100 times lower with a mass increase of a factor 10.

What was done in order to reduce the radioactive background?
Install the detector underground...

Gran Sasso
1.4 km of rock
~ 3000 m.w.e.

XENON
Most of the stuff goes outside of the shield...
Improve the shield...

- 5 cm thick layer of Low activity OFHC Copper
What is inside has to be carefully selected

242 (Hamamatsu R8520) 1"x1"
low radioactivity PMTs

SS
PTFE
Copper
Cables
Screws

100 kg LXe Active veto
(side, top and bottom)
Low level HPGe counting for material screening

Dedicated detector

GATOR

LNGS screening facility
Material screening results (selection)

Stainless Steel

<table>
<thead>
<tr>
<th>Material</th>
<th>238U [mBq/kg]</th>
<th>232Th [mBq/kg]</th>
<th>60Co [mBq/kg]</th>
<th>40K [mBq/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mm SS Nironit (flange and bars)</td>
<td>< 1.3</td>
<td>2.9 ± 0.7</td>
<td>1.4 ± 0.3</td>
<td>< 7.1</td>
</tr>
<tr>
<td>2.5 mm SS Nironit (bottom cryo)</td>
<td>< 2.7</td>
<td>< 1.5</td>
<td>13 ± 1</td>
<td>< 12</td>
</tr>
</tbody>
</table>

Inner detector materials

<table>
<thead>
<tr>
<th>Material</th>
<th>238U [mBq/kg]</th>
<th>232Th [mBq/kg]</th>
<th>60Co [mBq/kg]</th>
<th>40K [mBq/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMT Bases (Cirlex)</td>
<td>65 ± 8</td>
<td>31 ± 10</td>
<td>< 3.6</td>
<td>< 66</td>
</tr>
<tr>
<td>Teflon (in use)</td>
<td>< 0.31</td>
<td>< 0.16</td>
<td>< 0.11</td>
<td>< 2.25</td>
</tr>
<tr>
<td>Copper (TPC inner structure)</td>
<td>< 0.22</td>
<td>< 0.21</td>
<td>0.21 ± 0.07</td>
<td>< 1.34</td>
</tr>
<tr>
<td>Small Screws (SS)</td>
<td>< 9.2</td>
<td>16 ± 4</td>
<td>9 ± 3</td>
<td>< 46.4</td>
</tr>
</tbody>
</table>

PMTs

<table>
<thead>
<tr>
<th>Material</th>
<th>238U [mBq/PMT]</th>
<th>232Th [mBq/PMT]</th>
<th>60Co [mBq/PMT]</th>
<th>40K [mBq/PMT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 PMTs</td>
<td>0.12 ± 0.01</td>
<td>0.11 ± 0.01</td>
<td>1.5 ± 0.1</td>
<td>6.9 ± 0.7</td>
</tr>
<tr>
<td>48 PMTs</td>
<td>0.11 ± 0.01</td>
<td>0.12 ± 0.01</td>
<td>0.56 +/- 0.04</td>
<td>7.7 +/- 0.8</td>
</tr>
<tr>
<td>22 HQE PMTs</td>
<td>< 0.64</td>
<td>0.18 ± 0.06</td>
<td>0.6 ± 0.1</td>
<td>12 ± 2</td>
</tr>
<tr>
<td>23 HQE PMTs</td>
<td>0.16 ± 0.05</td>
<td>0.46 ± 0.16</td>
<td>0.73 ± 0.07</td>
<td>14 ± 2</td>
</tr>
</tbody>
</table>

Special thanks to Matthias Laubenstein (LNGS screening facility)
Gamma background

Single electron recoils

Total electron recoil rate (mDRU) [5,100] keVee:

24.05 ± 0.17 (50 kg) 9.07 ± 0.14 (30 kg)
Neutron background

Single nuclear recoils in the whole active volume from materials

Total single nuclear recoil rate $[5,27] \text{ keV}_{	ext{r}}$ (including rock and muons)
- 1.62 n/year (50 kg)
- 0.60 n/year (30 kg)
Conclusions

Great discovery potentials: \(\sim 2 \times 10^{-45} \text{ cm}^2 \) in 7 months
Thank you