

Status of the XENON100 experiment for WIMP direct detection

Alfredo Davide Ferella University of Zurich (UZH)

The 2009 Europhysics Conference on High Energy Physics Krakow, 16-22 July 2009

Dark Matter Direct Detection

Double phase TPC

- •Primary scintillation signal (S1)
- •Electrons drift over 30 cm max distance
- •Electrons are extracted and accelerated generating secondary scintillation signal
- •The time difference between the two signals gives information on event position in *z*

Why Liquid Xenon?

- √large mass (ton scale)
- ✓ easy cryogenics
- \checkmark low energy threshold (a few keV)
- ✓A~131 (good for SI)
- √~50% odd isotopes (SD)
- \checkmark background suppression
 - good self shielding features (~3 g/cm³)
 - low intrinsic radioactivity
 - gamma background discrimination
 - position sensitive (TPC mode)

The Collaboration

N. Hasebe

K. Ni

Xenon100: design

- ~170 kg total / ~65 kg target LXe (15 cm radius , 30 cm drift)
- Active LXe veto improved shield (Pb,Poly,Cu,N2 purge)
- New high QE (>32%@175nm) low activity 1" R8520 PMTs (total 242 PMTs)
- Cryocooler and feed-through outside the shield

Xenon100: Data Acquisition

- CAEN V1724 100 MHz digitizer (14 bit resolution)
- Circular buffer -> dead time free
- Integrated FPGA for zero length encoding

- Slow control to monitor the detector crucial parameters
- sms alarms are sent to people on shift in case of emergency

Xenon100: Data Acquisition

- CAEN V1724 100 MHz digitizer (14 bit resolution)
- Circular buffer -> dead time free
- Integrated FPGA for zero length encoding

- Slow control to monitor the detector crucial parameters
- sms alarms are sent to people on shift in case of emergency

P1 1.15 atm

Xenon100: PMT light calibration

Xenon100: Position reconstruction

3 different methods for xy position reconstruction: neural network support vector machine Least squares minimization

Xenon100: Position reconstruction

3 different methods for xy position reconstruction: neural network support vector machine Least squares minimization

18000

Xenon100: light yield and electron lifetime

(started 5/9/09, after earthquake)

Hot getter (SAES) for impurity removal

Xenon100: gamma calibration

Calibration data are being taken every day in order to check detector performances, stability and purity evolution.

Xenon100: goals

- Improve the sensitivity ~ 50 times over XENON10.
- Assuming same energy threshold and same discrimination power as XENON10, the required background in the fiducial volume needs to be 100 times lower with a mass increase of a factor 10.

XENON10 SI limit: PRL100, 021303 (2008)

What was done in order to reduce the radioactive background?

Install the detector underground...

Most of the stuff goes outside of the shield...

Improve the shield...

• 5 cm thick layer of Low activity OFHC Copper

What is inside has to be carefully selected

SS

100 kg LXe Active veto (side, top and bottom)

Low level HPGe counting for material screening

Dedicated detector

LNGS screening facility

Material screening results (selection)

Stainless Steel

Material	238U [mBq/kg]	232Th [mBq/kg]	60Co [mBq/kg]	40K [mBq/kg]			
25 mm SS Nironit (flange and bars)	< 1.3	2.9 ± 0.7	1.4 ± 0.3	< 7.1			
2.5 mm SS Nironit (bottom cryo)	< 2.7	< 1.5	13 ± 1	< 12			
Inner detector materials							
PMT Bases (Cirlex)	65 ± 8	31 ± 10	< 3.6	< 66			
Teflon (in use)	< 0.31	< 0.16	< 0.11	< 2.25			
Copper (TPC inner structure)	< 0.22	< 0.21	0.21 ± 0.07	< 1.34			
Small Screws (SS)	< 9.2	16 ± 4	9 ± 3	< 46.4			

PMTs

	238U [mBq/PMT]	232Th [mBq/PMT]	60Co [mBq/PMT]	40K [mBq/PMT]	
39 PMTs	0.12 ± 0.01	0.11 ± 0.01	1.5 ± 0.1	6.9 ± 0.7	
48 PMTs	0.11 ± 0.01	0.12 ± 0.01	0.56 +/- 0.04	7.7 +/- 0.8	
22 HQE PMTs	< 0.64	0.18 ± 0.06	0.6 ± 0.1	12 ± 2	
23 HQE PMTs	0.16 ± 0.05	0.46 ± 0.16	0.73 ± 0.07	14 ± 2	
Special thanks to Matthias Laubenstein (LNGS screening					

facility)

Gamma background

Total electron recoil rate (mDRU) [5,100] keV_{ee}: 24.05 \pm 0.17 (50 kg) 9.07 \pm 0.14 (30 kg)

Neutron background

Single nuclear recoils in the whole active volume from materials

(including rock and muons) 1.62 n/year (50 kg) 0.60 n/year (30 kg)

Conclusions

Great discovery potentials: ~ $2 \times 10^{-45} \text{ cm}^2$ in 7 months

Thank you