New physics sensitivity of the decay $B \to K^* \ell^+ \ell^-$

Tobias Hurth (CERN, SLAC)

in collaboration

with U.Egede, W.Reece (LHCb, Imperial), J.Matias, M.Ramon (Barcelona)

JHEP 0811:032,2008, arXiv:0807.2589 [hep-ph] and forthcoming manuscript

Key issue: separation of new physics and hadronic effects

Factorization formulae based on soft-collinear effective theory (SCET):

for $B \to K^*$ formfactors

$$F_i = H_i \xi^P(E) + \phi_B \otimes T_i \otimes \phi_{K^*}^P + O(\Lambda/m_b)$$

for the decay amplitudes

$$T_a^{(i)} = C_a^{(i)} \xi_a + \phi_B \otimes T_a^{(i)} \otimes \phi_{a,K^*} + O(\Lambda/m_b)$$

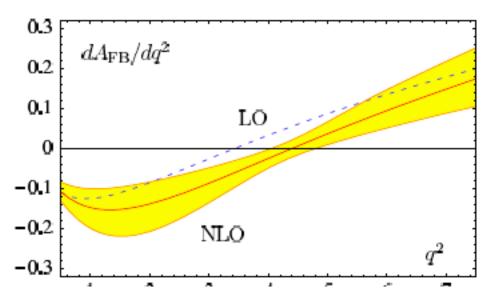
- Separation of perturbative hard kernels from process-independent nonperturbative functions like form factors
- Relations between formfactors in large-energy limit
- Limitation: insufficient information on power-suppressed Λ/m_b terms (breakdown of factorization: 'endpoint divergences')

Phenomenologically highly relevant issue

general strategy of LHCb to look at ratios of exclusive modes

LHCb Strategy: Focus on ratios of exclusive modes

Well-known example: Forward-Backward-Charge-Asymmetry in $B \to K^* \ell^+ \ell^-$



 In contrast to the branching ratio the zero of the FBA is almost insensitive to hadronic uncertainties. At LO the zero depends on the short-distance Wilson coefficients only:

$$q_0^2 = q_0^2(C_7, C_9), \quad q_0^2 = (3.4 + 0.6 - 0.5)GeV^2 \quad (LO)$$

 NLO contribution calculated within QCD factorization approach leads to a large 30%-shift: (Beneke, Feldmann, Seidel 2001)

$$q_0^2 = (4.39 + 0.38 - 0.35)GeV^2$$
 (NLO)

• However: Issue of unknown power corrections (Λ/m_b) !

More opportunities in $B \to K^*(K\pi)\ell^+\ell^-$: angular distributions

• Assuming the \bar{K}^* to be on the mass shell, the decay $\bar{B^0} \to \bar{K}^{*0} (\to K^- \pi^+) \ell^+ \ell^-$ described by the lepton-pair invariant mass, s, and the three angles θ_l , θ_{K^*} , ϕ .

After summing over the spins of the final particles:

$$\frac{d^4\Gamma_{\overline{B}_d}}{dq^2 d\theta_l d\theta_K d\phi} = \frac{9}{32\pi} I(q^2, \theta_l, \theta_K, \phi) \sin \theta_l \sin \theta_K$$

LHCb statistics ($\succ 2fb^{-1}$) allows for a full angular fit!

$$\mu^{-}$$
 θ_{l}
 \bar{B}^{0}
 θ_{K}
 π^{+}

$$I = I_1 + I_2 \cos 2\theta_l + I_3 \sin^2 \theta_l \cos 2\phi + I_4 \sin 2\theta_l \cos \phi + I_5 \sin \theta_l \cos \phi + I_6 \cos \theta_l$$
$$+ I_7 \sin \theta_l \sin \phi + I_8 \sin 2\theta_l \sin \phi + I_9 \sin^2 \theta_l \sin 2\phi.$$

- Angular distribution functions: depend on the 6 complex K^* spin amplitudes $I_i = I_i(A_{\perp L/R}, A_{\parallel L/R}, A_{0L/R})$ (limit $m_{\rm lepton} = 0$)
- 12 theoretical independent amplitudes $A_j\Leftrightarrow$ 9 independent coefficient functions in I Only 9 amplitudes A_j are independent in respect to the angular distribution

Theoretical framework

• Effective Hamiltonian describing the guark transition $b \to s\ell^+\ell^-$:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} [C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu)]$$

We focus on magnetic and semi-leptonic operators and their chiral partners

- Hadronic matrix element parametrized in terms of $B \to K^*$ form factors:
- ullet Crucial input: In the $m_B o \infty$ and $E_{K^*} o \infty$ limit

7 form factors $(A_i(s)/T_i(s)/V(s))$ reduce to 2 univeral form factors $(\xi_{\perp}, \xi_{\parallel})$ (Charles, Le Yaouanc, Oliver, Pène, Raynal 1999)

Form factor relations broken by α_s and Λ/m_b corrections

- Large Energy Effective Theory ⇒ QCD factorization/SCET (IR structure of QCD)
- Above results are valid in the kinematic region in which

$$E_{K^*} \simeq rac{m_B}{2} \left(1 - rac{s}{m_R^2} + rac{m_{K^*}^2}{m_R^2}
ight)$$
 is large.

We restrict our analysis to the dilepton mass region $s \in [1\text{GeV}^2, 6\text{GeV}^2]$

K^st spin amplitudes in the heavy quark and large energy limit

$$A_{\perp L,R} = (H_{+1} \mp H_{-1})/\sqrt{2}, \quad A_0 = H_0$$

$$A_{\perp L,R} = N\sqrt{2}\lambda^{1/2} \left[(C_9^{\text{eff}} \mp C_{10}) \frac{V(s)}{m_B + m_{K^*}} + \frac{2m_b}{s} (C_7^{\text{eff}} + C_7^{\text{eff}'}) T_1(s) \right]$$

$$A_{\parallel L,R} = -N\sqrt{2} (m_B^2 - m_{K^*}^2) \left[(C_9^{\text{eff}} \mp C_{10}) \frac{A_1(s)}{m_B - m_{K^*}} + \frac{2m_b}{s} (C_7^{\text{eff}} - C_7^{\text{eff}'}) T_2(s) \right]$$

$$A_{0L,R} = -\frac{N}{2m_{K^*}\sqrt{s}} \left[(C_9^{\text{eff}} \mp C_{10}) \left\{ (m_B^2 - m_{K^*}^2 - s)(m_B + m_{K^*}) A_1(s) - \lambda \frac{A_2(s)}{m_B + m_{K^*}} \right\} + 2m_b (C_7^{\text{eff}} - C_7^{\text{eff}'}) \left\{ (m_B^2 + 3m_{K^*}^2 - s) T_2(s) - \frac{\lambda}{m_B^2 - m_{K^*}^2} T_3(s) \right\} \right]$$

$$\begin{split} A_{\perp L,R} &= +\sqrt{2}Nm_B(1-\hat{s}) \left[(C_9^{\text{eff}} \mp C_{10}\,) + \frac{2\hat{m}_b}{\hat{s}} (C_7^{\text{eff}} + C_7^{\text{eff}'}\,) \right] \xi_\perp(E_{K^*}) \\ A_{\parallel L,R} &= -\sqrt{2}Nm_B(1-\hat{s}) \left[(C_9^{\text{eff}} \mp C_{10}\,) + \frac{2\hat{m}_b}{\hat{s}} (C_7^{\text{eff}} - C_7^{\text{eff}'}\,) \right] \xi_\perp(E_{K^*}) \\ A_{0L,R} &= -\frac{Nm_B}{2\hat{m}_{K^*}\sqrt{\hat{s}}} (1-\hat{s})^2 \left[(C_9^{\text{eff}} \mp C_{10}\,) + 2\hat{m}_b (C_7^{\text{eff}} - C_7^{\text{eff}'}\,) \right] \xi_\parallel(E_{K^*}) \end{split}$$

Careful construction of observables

- ullet Good sensitivity to NP contribitions, i.e. to $C_7^{eff'}$
- Small theoretical uncertainties
 - Dependence of soft form factors, ξ_{\perp} and ξ_{\parallel} , to be minimized ! form factors should cancel out exactly at LO, best for all s
 - unknown Λ/m_b power corrections

$$A_{\perp,\parallel,0} = A_{\perp,\parallel,0}^{0} \left(1 + c_{\perp,\parallel,0}\right)$$
 vary c_i in a range of $\pm 10\%$ and also of $\pm 5\%$

- Scale dependence of NLO result
- Input parameters

Good experimental resolution

Interesting observables

Forward-backward asymmetry

$$\begin{split} A_{\rm FB} &\equiv \frac{1}{d\Gamma/dq^2} \left(\int_0^1 d(\cos\theta) \, \frac{d^2\Gamma[\bar{B} \to \bar{K}^*\ell^+\ell^-]}{dq^2 d\cos\theta} - \int_{-1}^0 d(\cos\theta) \, \frac{d^2\Gamma[\bar{B} \to \bar{K}^*\ell^+\ell^-]}{dq^2 d\cos\theta} \right) \\ A_{\rm FB} &= \frac{3}{2} \frac{{\rm Re}(A_{\parallel L} A_{\perp L}^*) - {\rm Re}(A_{\parallel R} A_{\perp R}^*)}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2} \end{split}$$

Form factors cancel out at LO only for Zero.

ullet Longitudinal polarisation of K^*

$$F_L(s) = \frac{|A_0|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

Form factors do not cancel at LO (→ larger hadronic uncertainties)

• Transversity amplitude A_T^2 (Krüger, Matias 2005)

$$A_T^{(2)} = \frac{|A_\perp|^2 - |A_\parallel|^2}{|A_\perp|^2 + |A_\parallel|^2}$$

Sensitive to right-handed currents (in LO directly $\sim C_7^{eff'}$)

Formfactor cancel out at LO for all s

Zero of $A_T^{(2)}$ (for $C_7^{eff'} \neq 0$) coincides with the Zero of A_{FB} at LO and is also independent from $C_7^{eff'}$ as in A_{FB} .

Projection fit possible for $A_T^{(2)}$, F_L , A_{FB}

$$\frac{d\Gamma'}{d\phi} = \frac{\Gamma'}{2\pi} \left(1 + \frac{1}{2} (1 - F_{\rm L}) A_T^{(2)} \cos 2\phi + A_{\rm Im} \sin 2\phi \right), \qquad \Gamma' = \frac{d\Gamma}{dq^2}$$

$$\frac{d\Gamma'}{d\theta_l} = \Gamma' \left(\frac{3}{4} F_{\rm L} \sin^2 \theta_l + \frac{3}{8} (1 - F_{\rm L}) (1 + \cos^2 \theta_l) + A_{\rm FB} \cos \theta_l \right) \sin \theta_l,$$

$$\frac{d\Gamma'}{d\theta_K} = \frac{3\Gamma'}{4} \sin \theta_K \left(2F_{\rm L} \cos^2 \theta_K + (1 - F_{\rm L}) \sin^2 \theta_K \right),$$

Observables appear linearly, fits performed on data binned in q^2 First experimental measurements with limited accuracy is possible But: $A_T^{(2)}$ suppressed by $1-F_L$

Full angular fit is superior, once the data set is large enough $(\succ 2fb^{-1})$

much better resolution (factor 3 even in $A_T^{(2)}$)

New observables are available

Unbinned analysis, q^2 dependence parametrised by polynomial

New observables

By inspection of the K^* spin amplitudes in terms of Wilson coefficients and SCET form factors one identifies further observables

- sensitive to $C_7^{eff'}$
- invariant under 3 R-L symmetries
- theoretical clean
- with high experimental resolution

$$A_T^{(3)} = \frac{|A_{0L}A_{\parallel L}^* + A_{0R}^*A_{\parallel R}|}{\sqrt{|A_0|^2|A_{\perp}|^2}}$$

$$A_T^{(3)} = \frac{|A_{0L}A_{\parallel L}^* + A_{0R}^*A_{\parallel R}|}{\sqrt{|A_0|^2|A_{\perp}|^2}} \qquad \qquad A_T^{(4)} = \frac{|A_{0L}A_{\perp L}^* - A_{0R}^*A_{\perp R}|}{|A_{0L}^*A_{\parallel L} + A_{0R}A_{\parallel R}^*|}$$

New observables allow crossschecks

Different sensibility to $C_7^{eff'}$ via A_0 in $A_T^{(3)}$, $A_T^{(4)}$

Next step: design of observables sensitive to other new physics operators (see also Buras et al. 2008)

Phenomenological analysis

Analysis of SM and models with additional right handed currents $(C_7^{eff'})$

Specific model:

MSSM with non-minimal flavour violation in the down squark sector

4 benchmark points

Diagonal: $\mu = M_1 = M_2 = M_{H^+} = m_{\tilde{u}_R} = 1 \text{ TeV } \tan \beta = 5$

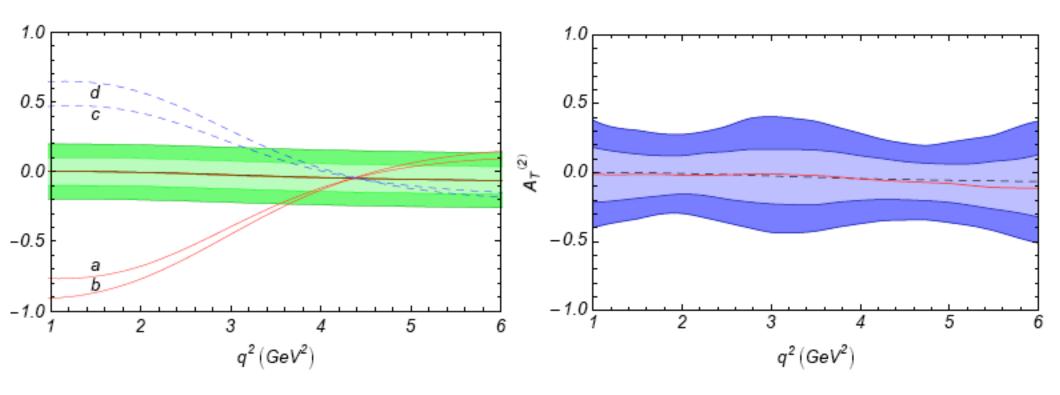
- Scenario A: $m_{\tilde{g}}=1$ TeV and $m_{\tilde{d}}\in$ [200, 1000] GeV $-0.1\leq \left(\delta^d_{LR}\right)_{32}\leq 0.1$
 - a) $m_{\tilde{g}}/m_{\tilde{d}} = 2.5$, $(\delta_{LR}^d)_{32} = 0.016$
 - b) $m_{\tilde{g}}/m_{\tilde{d}} = 4$, $(\delta_{LR}^d)_{32} = 0.036$.
- Scenario B: $m_{\tilde{d}} = 1$ TeV and $m_{\tilde{g}} \in [200, 800]$ GeV mass insertion as in Scenario A.
 - c) $m_{\tilde{g}}/m_{\tilde{d}} = 0.7$, $(\delta_{LR}^d)_{32} = -0.004$
 - d) $m_{\tilde{g}}/m_{\tilde{d}} = 0.6$, $(\delta_{LR}^d)_{32} = -0.006$.

Check of compatibility with other constraints (B physics, ρ parameter,

Higgs mass, particle searches, vacuum stability constraints

Results

$$A_T^{(2)} = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}$$



Theoretical sensitivity

light green $\pm 5\% \Lambda/m_b$

dark green $\pm 10\% \Lambda/m_b$

Experimental sensitivity $(10fb^{-1})$

light green 1 σ

dark green 2 σ

Remark: SuperLHCB/SuperB can offer more precision

Crucial: theoretical status of Λ/m_b corrections has to be improved



Tobias Hurth, New physics sensitivity of the decay $B \to K^* \ell^+ \ell^-$

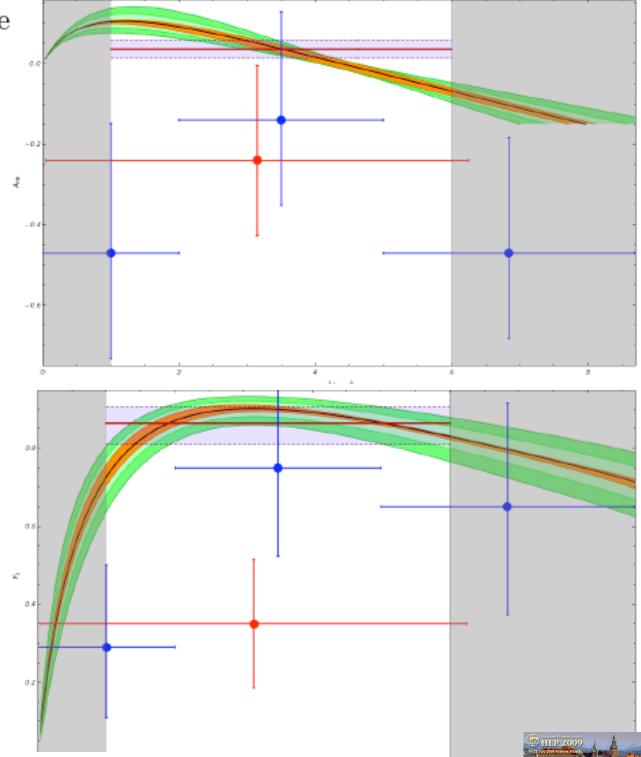
old observables: data available

Babar FPCP 2008 Belle ICHEP 2008

$$A_{\rm FB} = \frac{3}{2} \frac{\text{Re}(A_{\parallel L} A_{\perp L}^*) - \text{Re}(A_{\parallel R} A_{\perp R}^*)}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

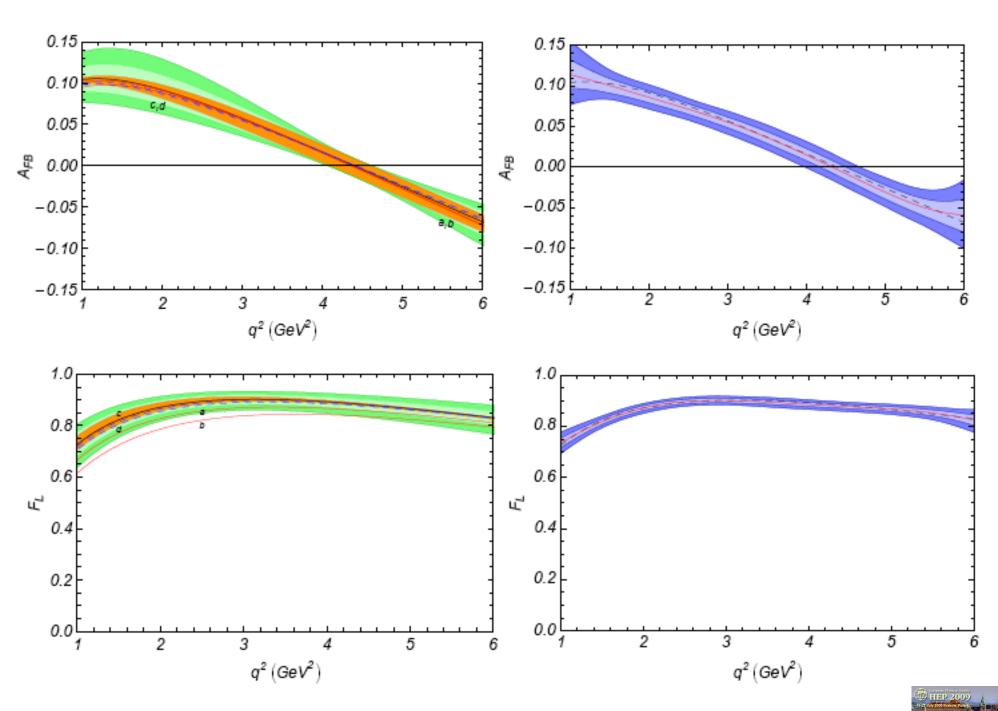
Babar FPCP 2008 Belle ICHEP 2008

$$F_L(s) = \frac{|A_0|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$



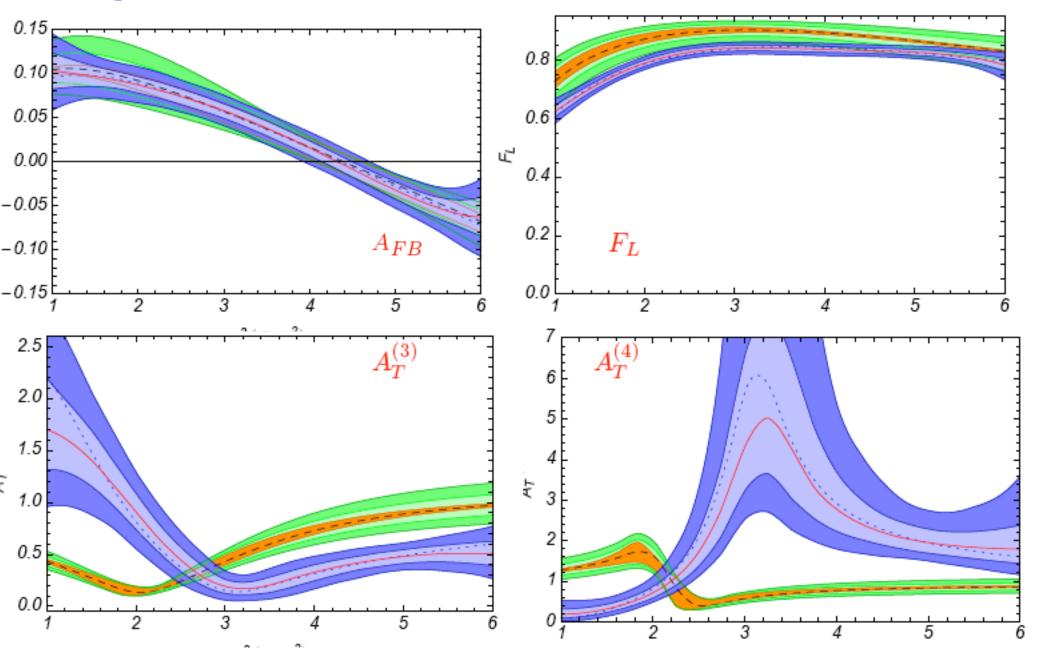
Tobias Hurth, New physics sensitivity of the decay $B \to K^* \ell^+ \ell^-$

LHCb $(10fb^{-1})$ will clarify the situation



Tobias Hurth, New physics sensitivity of the decay $B \to K^* \ell^+ \ell^-$

Comparison between old and new observables



The experimental errors assuming SUSY scenario (b) with large-gluino mass and positive mass insertion, is compared to the theoretical errors assuming the SM.

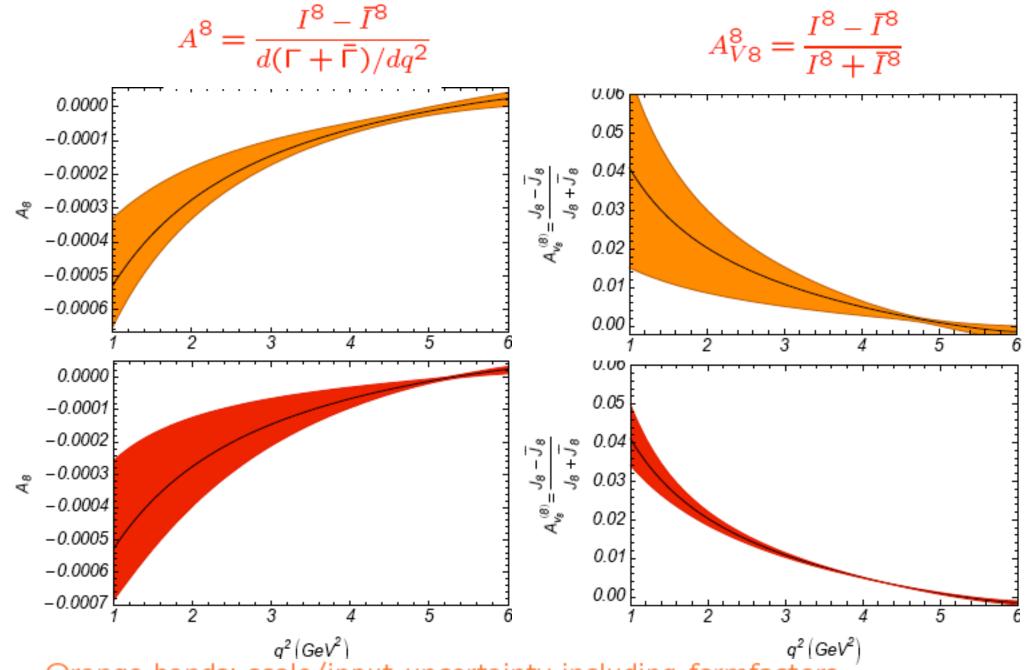
CP violating observables

- Angular distributions allow for the measurement of 7 CP asymmetries (Krüger, Seghal, Sinha² 2000, 2005)
- NLO (α_s) corrections included: scale uncertainties reduced (however, some CP asymmetries start at NLO only)

(Bobeth, Hiller, Piranishvili 2008)

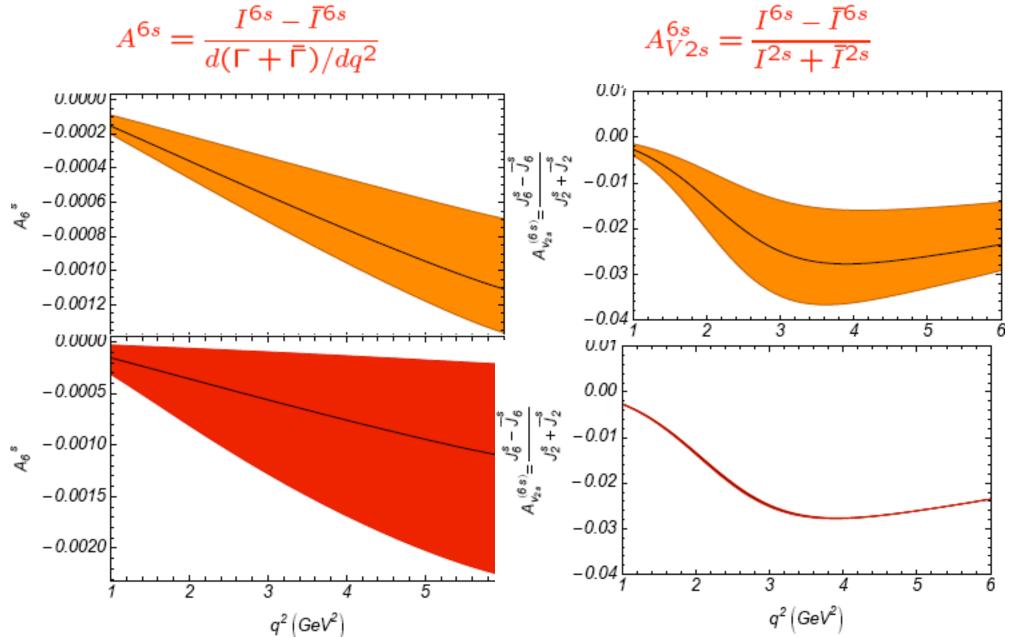
- New CP-violating phases in C_{10} , C_{10}' , C_{9} , and C_{9}' are by now NOT very much constrained and enhance the CP-violating observables drastically (Bobeth,Hiller,Piranishvili 2008; Buras et al. 2008)
 - New physics reach of CP-violating observables of the angular distributions depends on the theoretical and experimental uncertainties:
 - soft/QCD formfactors
 - other input parameters
 - scale dependences
 - $-\Lambda/m_b$ corrections
 - experimental sensitivity in the full angular fit

Appropriate normalization eliminates the uncertainty due to form factors

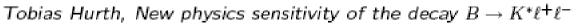


Orange bands: scale/input uncertainty including formfactors 'Red bands: conservative estimate of uncertainty due to formfactors only

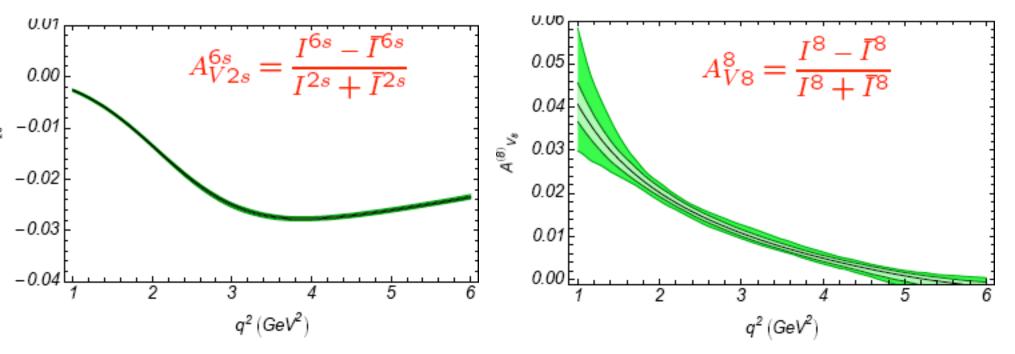
Appropriate normalization eliminates the uncertainty due to form factors II



Orange bands: scale/input uncertainty including formfactors Red bands: conservative estimate of uncertainty due to formfactors only



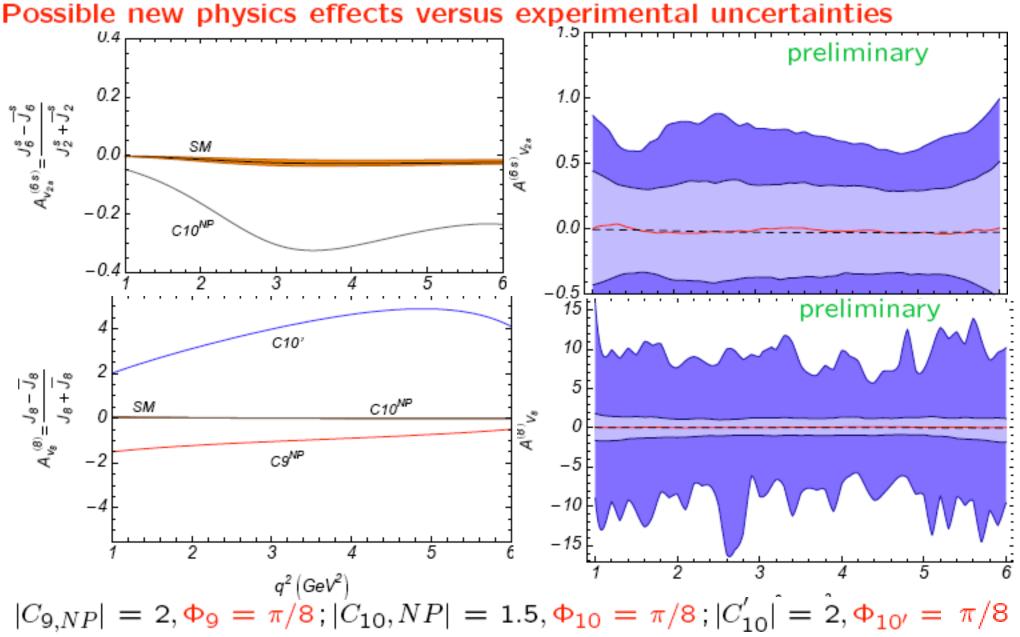
Λ/m_b corrections very small due to small weak SM phase



Uncertainty due Λ/m_b corrections significantly smaller than error due to input parameters

Ansatz with random strong phases $\Phi_{1/2}$ and $C_{1/2}$ with 5% and 10% $A=A_1(1+C_1e^{i\phi_1})+e^{i\theta}A_2(1+C_2e^{i\phi_2})$

Will significantly larger in scenarios with large new physics phases



New physics not outside the experimental 2σ range.

However, all phases $(0 \rightarrow 2\pi)$ are compatible with the present data

In contrast to observables like A_T^i , CP observables call for Super-LHCb

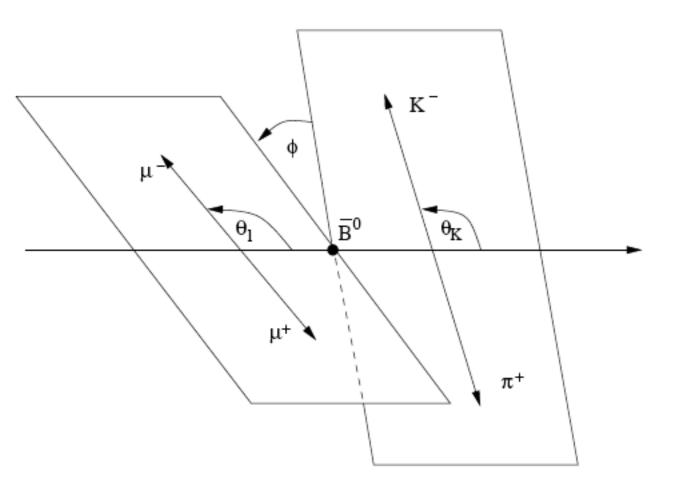
- NLO corrections included
- Λ/m_b corrections estimated for each amplitude as $\pm 10\%$ and $\pm 5\%$ this uncertainty fully dominant

Input parameters:

m_B	$5.27950 \pm 0.00033 \mathrm{GeV}$	λ	0.2262 ± 0.0014
m_K	$0.896\pm0.040\mathrm{GeV}$	A	0.815 ± 0.013
M_W	$80.403 \pm 0.029 \mathrm{GeV}$	$ar{ ho}$	0.235 ± 0.031
M_Z	$91.1876 \pm 0.0021 \mathrm{GeV}$	$ar{\eta}$	0.349 ± 0.020
$\hat{m}_t(\hat{m}_t)$	$172.5 \pm 2.7~\mathrm{GeV}$	$\Lambda_{\text{QCD}}^{(n_f=5)}$	$220 \pm 40 \mathrm{MeV}$
$m_{b,\mathrm{PS}}(2\mathrm{GeV})$	$4.6 \pm 0.1~{ m GeV}$	$\alpha_s(M_Z)$	0.1176 ± 0.0002
m_c	$1.4 \pm 0.2 \mathrm{GeV}$	$\alpha_{ m em}$	1/137.035999679
f_B	$200 \pm 30~\mathrm{MeV}$	$a_1(K^*)_{\perp, \parallel}$	0.20 ± 0.05
$f_{K^*,\perp}(1{\rm GeV})$	$185\pm10~\mathrm{MeV}$	$a_2(K^*)_{\perp}$	0.06 ± 0.06
$f_{K^*,\parallel}$	$218 \pm 4~\mathrm{MeV}$	$a_2(K^*)_{\parallel}$	0.04 ± 0.04
$\xi_{K^*, }(0)$	0.16 ± 0.03	$\lambda_{B,+}(1.5 \text{GeV})$	$0.485\pm0.115\mathrm{GeV}$
$\xi_{K^*,\perp}(0)^{\P}$	0.26 ± 0.02		

 $\xi_{K^*,\perp}(0)$ has been determined from experimental data.

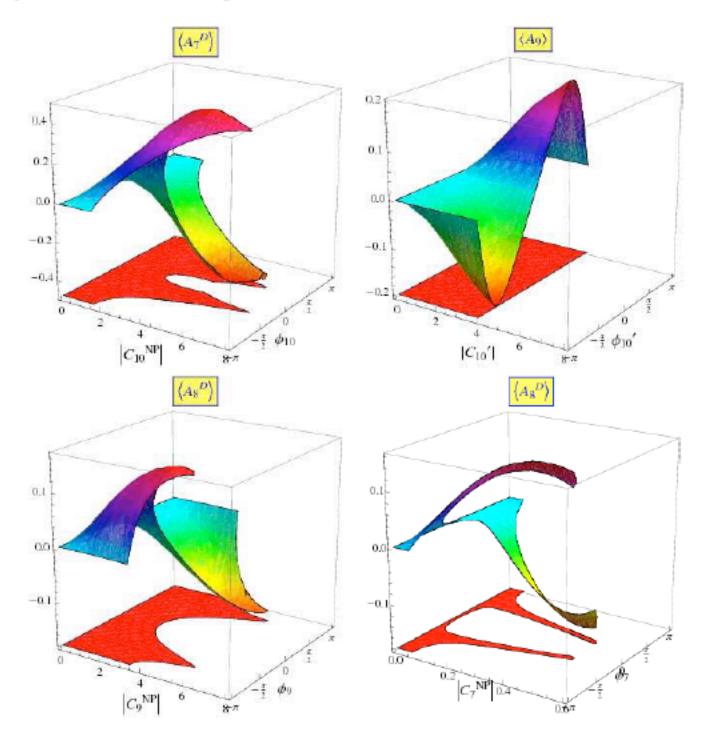
More on kinematics:



- **z** axis: Direction of anti-K*0 in rest frame of anti-B_d
- $θ_I$: Angle between $μ^-$ and z axis in μμ rest frame
- θ_K: Angle between K⁻ and z axis in anti-K* rest frame
- φ : Angle between the anti-K* and μμ decay planes

$$e_z = \frac{\mathbf{p}_{K^-} + \mathbf{p}_{\pi^+}}{|\mathbf{p}_{K^-} + \mathbf{p}_{\pi^+}|} \,, \quad e_l = \frac{\mathbf{p}_{\mu^-} \times \mathbf{p}_{\mu^+}}{|\mathbf{p}_{\mu^-} \times \mathbf{p}_{\mu^+}|} \,, \quad e_K = \frac{\mathbf{p}_{K^-} \times \mathbf{p}_{\pi^+}}{|\mathbf{p}_{K^-} \times \mathbf{p}_{\pi^+}|}$$

$$\cos \theta_l = \frac{\mathbf{q}_{\mu^-} \cdot \mathbf{e}_z}{|\mathbf{q}_{\mu^-}|}, \quad \cos \theta_K = \frac{\mathbf{r}_{K^-} \cdot \mathbf{e}_z}{|\mathbf{r}_{K^-}|}, \quad \sin \phi = (\mathbf{e}_l \times \mathbf{e}_K) \cdot \mathbf{e}_z, \quad \cos \phi = \mathbf{e}_K \cdot \mathbf{e}_l$$



Angular distributions functions depend on the 6 complex K^* spin amplitudes

$$I_i = I_i(A_{\perp L/R}, A_{\parallel L/R}, A_{0L/R})$$

(limit $m_{\text{lepton}} = 0$)

Helicity amplitudes:

$$A_{\perp,\parallel} = (H_{+1} \mp H_{-1})/\sqrt{2}, \quad A_0 = H_0,$$

$$\begin{split} I_1 &= \frac{3}{4} \left(|A_{\perp L}|^2 + |A_{\parallel L}|^2 + (L \to R) \right) \sin^2 \theta_K + \left(|A_{0L}|^2 + |A_{0R}|^2 \right) \cos^2 \theta_K \\ &\equiv a \sin^2 \theta_K + b \cos^2 \theta_K, \\ I_2 &= \frac{1}{4} (|A_{\perp L}|^2 + |A_{\parallel L}|^2) \sin^2 \theta_K - |A_{0L}|^2 \cos^2 \theta_K + (L \to R) \\ &\equiv c \sin^2 \theta_K + d \cos^2 \theta_K, \\ I_3 &= \frac{1}{2} \left[(|A_{\perp L}|^2 - |A_{\parallel L}|^2) \sin^2 \theta_K + (L \to R) \right] \equiv e \sin^2 \theta_K, \\ I_4 &= \frac{1}{\sqrt{2}} \left[\operatorname{Re}(A_{0L}A_{\parallel L}^*) \sin 2\theta_K + (L \to R) \right] \equiv f \sin 2\theta_K, \\ I_5 &= \sqrt{2} \left[\operatorname{Re}(A_{0L}A_{\perp L}^*) \sin 2\theta_K - (L \to R) \right] \equiv g \sin 2\theta_K, \\ I_6 &= 2 \left[\operatorname{Re}(A_{\parallel L}A_{\perp L}^*) \sin^2 \theta_K - (L \to R) \right] \equiv h \sin^2 \theta_K, \\ I_7 &= \sqrt{2} \left[\operatorname{Im}(A_{0L}A_{\parallel L}^*) \sin 2\theta_K - (L \to R) \right] \equiv j \sin 2\theta_K, \\ I_8 &= \frac{1}{\sqrt{2}} \left[\operatorname{Im}(A_{0L}A_{\perp L}^*) \sin 2\theta_K + (L \to R) \right] \equiv k \sin 2\theta_K, \\ I_9 &= \left[\operatorname{Im}(A_{\parallel L}^*A_{\perp L}) \sin^2 \theta_K + (L \to R) \right] \equiv m \sin^2 \theta_K. \end{split}$$

11 coefficients to be fixed in the full angular fit, but a=3c and b=-d

12 theoretical independent amplitudes $A_j \Leftrightarrow 9$ independent coefficient functions in I

Symmetries of the angular distribution functions $I_i = I_i(A_{\perp L/R}, A_{\parallel L/R}, A_{0L/R})$

(angular distribution spin averaged)

Global phase transformation of the L amplitudes

$$A_{\perp L}^{'} = e^{i\phi_L} A_{\perp L}, \ A_{||L}^{'} = e^{i\phi_L} A_{||L}, \ A_{0L}^{'} = e^{i\phi_L} A_{0L}$$

Global phase transformations of the R amplitudes

$$A_{\perp R}' = e^{i\phi_R} A_{\perp R}, \ A_{\parallel R}' = e^{i\phi_R} A_{\parallel R}, \ A_{0R}' = e^{i\phi_R} A_{0R}$$

Continuous L-R rotation

$$A'_{\perp L} = + \cos \theta A_{\perp L} + \sin \theta A^*_{\perp R}$$

$$A'_{\perp R} = - \sin \theta A^*_{\perp L} + \cos \theta A_{\perp R}$$

$$A'_{0L} = + \cos \theta A_{0L} - \sin \theta A^*_{0R}$$

$$A'_{0R} = + \sin \theta A^*_{0L} + \cos \theta A_{0R}$$

$$A'_{\parallel L} = + \cos \theta A_{\parallel L} - \sin \theta A^*_{\parallel R}$$

$$A'_{\parallel R} = + \sin \theta A^*_{\parallel L} + \cos \theta A_{\parallel R}.$$

Only 9 amplitudes A_j are independent in respect to the angular distribution

Observables as $F(I_i)$ are also invariant under the 3 symmetries!

• Transversity amplitude A_T^1

Defining the helicity distributions Γ_{\pm} as $\Gamma_{\pm}=|H_{\pm 1}^{L}|^{2}+|H_{\pm 1}^{R}|^{2}$

one can define (Melikhov, Nikitin, Simula 1998)

$$A_T^{(1)} = \frac{\Gamma_- - \Gamma_+}{\Gamma_- + \Gamma_+} \qquad \qquad A_T^{(1)} = \frac{-2\text{Re}(A_{\parallel} A_{\perp}^*)}{|A_{\perp}|^2 + |A_{\parallel}|^2}$$

Very sensitive to right-handed currents (Lunghi, Matias 2006)

Very insensitive to Λ/m_b corrections

Formfactor cancel out at LO for all s

Big surprise:

 $A_T^{(1)}$ is not invariant under the symmetries of the angular distribution

- $-A_T^{(1)}$ cannot be extracted from the full angular distribution
- LHCb: practically not possible to measure the helicity of the final states on a event-by-event basis (neither as statistical distribution)
- Not a principal problem, but $A_T^{(1)}$ not an observable at LHCb or at Super B (measure three-momentum and charge)

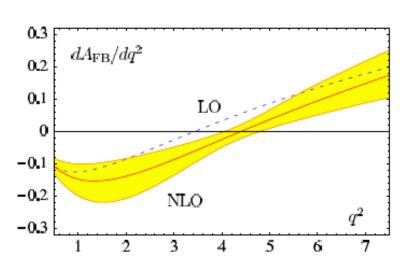
• Region $s \leq 1 GeV^2$

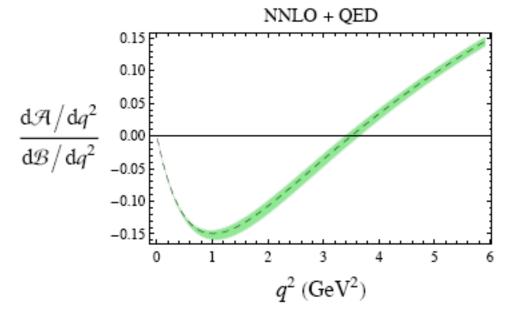
- corresponds to information which is tested out by the $b \to s \gamma$ mode
- lower resonances complicate the theoretical description
- longitudinal amplitude generates a logarithmic divergence in the limit $s \to 0$ indicating problems in the theoretical description
 - transversal amplitude however is fine, so observables based on it free from this theoretical problem
- electron modes preferable (lower cut)

SLHCb versus SFF Important role of Λ/m_b corrections

Measurement of inclusive modes restricted to e^+e^- machines. (S)LHC experiments: Focus on theoretically clean exclusive modes necessary.

Well-known example: Zero of forward-backward-charge asymmetry in $b \rightarrow s\ell^+\ell^-$





Exclusive Zero:

Theoretical error: $9\% + O(\Lambda/m_b)$ uncertainty Egede, Hurth, Matias, Ramon, Reece

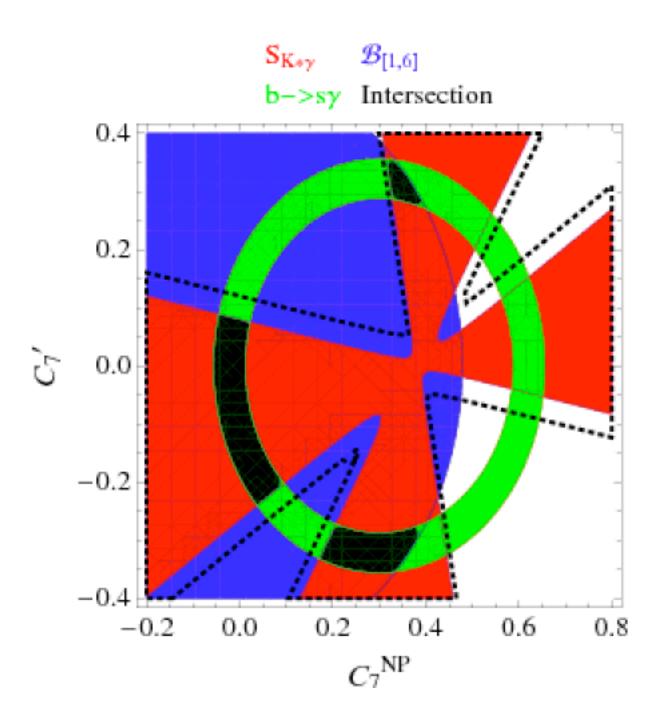
arXiv:0807.2589

Experimental error at SLHC: 2.1% Libby

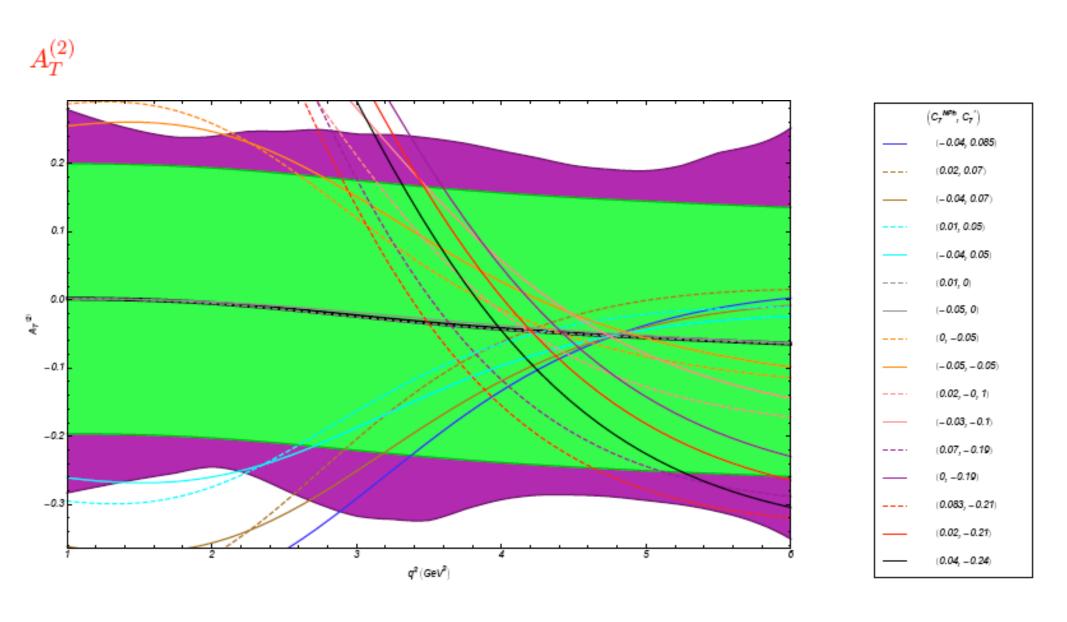
Inclusive Zero:

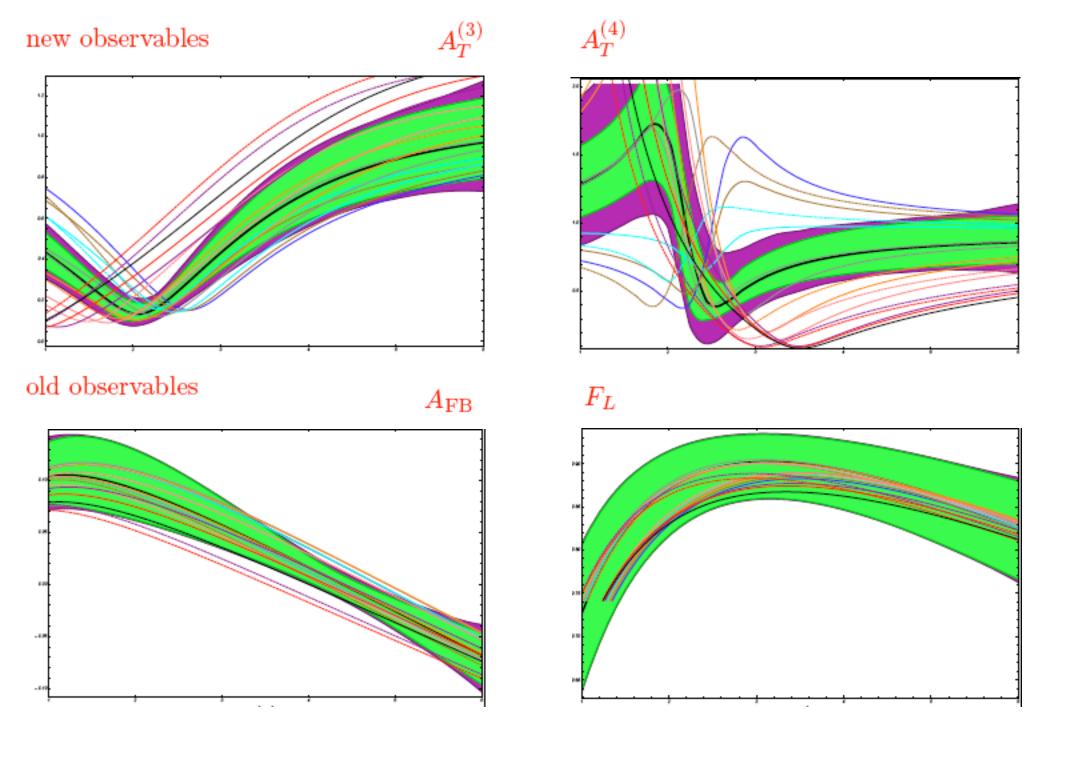
Theoretical error: O(5%) Huber, Hurth, Lunghi, arXiv:0712.3009

Experimental error at SFF: 4 – 6% Browder, Cluchini, Gershon, Hazumi, Hurth, Okada, Stocchi arXiv:0710.3799



Test of allowed region around $C'_7 = 0$ in the C_7 and C'_7 plane





Present role of time-dependent CP asymmetry $B \to K^* \gamma$

Theoretical status of CP asymmetry

- General folklore: within the SM are small, $O(m_s/m_b)$

$$\mathcal{O}_{7L} \equiv \frac{e}{16\pi^2} m_b \, \bar{s} \sigma_{\mu\nu} P_R \, b F^{\mu\nu} \quad \mathcal{O}_{7R} \equiv \frac{e}{16\pi^2} m_{s/d} \, \bar{s} \sigma_{\mu\nu} P_L \, b F^{\mu\nu} \ .$$

Mainly: $\bar{B} \to X_s \gamma_L$ and $B \to X_s \gamma_R \Rightarrow$ almost no interference in the SM

- But: within the inclusive case the assumption of a two-body decay is made, the argument does not apply to b → sγgluon
 Corrections of order O(α_s), mainly due operator O₂ ⇒ Γ^{brems}/Γ₀ ~ 0.025 ⇒ 11% right-handed contamination
 Grinstein, Grossman, Ligeti, Pirjol, hep-ph/0412019
- − QCD sum rule estimate of the time-dependent CP asymmetry in $B^0 \to K^{*0} \gamma$ including long-distance contributions due to soft-gluon emission from quark loops versus dimensional estimate of the nonlocal SCET operator series: Ball,Zwicky,hep-ph/0609037 \leftrightarrow Grinstein,Pirjol,hep-ph/0510104

$$S = -0.022 \pm 0.015^{+0}_{-0.01}, \ S^{sgluon} = -0.005 \pm 0.01 \leftrightarrow |S^{sgluon}| \approx 0.06$$

Note: Expansion parameter is Λ_{QCD}/Q where Q is the kinetic energy of the hadronic part. There is no contribution at leading order. Therefore, the effect is expected to be larger for larger invariant hadronic mass, thus, the K^* mode has to have the smallest effect, below the 'average' 10%

Experiment: $S = 0.19 \pm 0.23$ (HFAG)

Future role of time-dependent CP asymmetry $B \to K^* \gamma$

$$S_{K^*\gamma} = -\frac{2|r|}{1+|r|^2} \sin\left(2\beta - \arg(C_7^{(0)}C_7')\right), \quad r = C_7'/C_7^{(0)}$$

SuperB: $\Delta S = \pm 0.04$ arXiv:hep-ex/0406071

LHCb: $B_s \to \Phi \gamma$

$$S_{\Phi\gamma} = 0 \pm 0.002$$

 $\sin(\phi_s)!$

Muheim, Xie, Zwicky, ar Xiv: 0802.0876

$$A_{\Phi\gamma}^{\Delta\Gamma} = 0.047 \pm 0.025 + 0.015$$

$$\cos(\phi_s)!$$

LHCb $(2fb^{-1})$: $\Delta A = 0.22$

Golutvin et al., LHCb-PHYS-2007-147