A General Search for New Phenomena at HERA

Gerhard Brandt 💓

On behalf of the

Collaboration

Outline

Event Selection Event Yields Discriminating Observables Statistical Analysis

Presented Paper: Phys. Lett. B **674** (2009), 257 [arxiv:0901.0507]

Collider and Experiments

General Search at HERA G. Brandt

General Search for Physics beyond the Standard Model (BSM)

- Purely signature based Look for events with high inv. masses and missing particles
- Do not depend on particular BSM models
- Search for deviations from the Standard Model
- Minimise probability of missing anything
- Quantify significance of any observation

In contrast: Specific Searches

- Need a BSM model
- Look only in particular corner of phase space
- Possibly larger sensitivity
- Can be cross checked by the general search

Strategy

- Select events with **all** possible high- P_T signatures Requires good understanding of detector and SM processes
- Use a statistical algorithm to look for deviations from the SM prediction in kinematic distributions Also include topological variables

All HERA high- $\mathbf{P}_{\!_{T}}$ processes taken into account

QCD

- Large Cross Sections
- Neutral Current DIS $ep \rightarrow eX$

• Charged Current DIS $ep \rightarrow \nu X$

• Photoproduction $\ \gamma p o X$

QED/weak

- Striking Signatures
- QED Compton $ep \to e\gamma X$

 ${\ensuremath{\bullet}}$ Lepton pair production $ep \to ell X$

• W production $ep \rightarrow eWX$

General Search at HERA G. Brandt

• Classify into channels by counting bodies (at least 2) (*e-e*, *e-j*, *j-j*, ...)

Event Yields In All Selected Channels

General Search at HERA G. Brandt

DES

Search Algorithm and Statistical Interpretation

General Search at HERA G. Brandt

Find Interesting Regions

• In each distribution of each channel look for region of greatest deviation from SM prediction

P Quantify Significance of deviation

 Test by finding interesting regions in many MC experiments

Global Significance of Channel

3

2

- Calculate MC prediction from toy experiments of HERA data
- Can compare all channels in one plot
- More interesting channels to the right of -log10P Distribution

Kinematic Distributions ΣP_{T}

Kinematic Distributions M_{all}

e - v

γ-j

<u>i-i-i</u>

е-е-е

γ-e-j

<u>j-j-j-j</u>

200

100

10

10⁻²

10

0

300

10²

10²

10

10⁻¹

10²

10⁻¹ 10⁻² 10³

10² 10

10

10

10⁻¹

10⁻²

10

10

10

10-4

10

10

General Search at HERA G. Brandt

e - e

γ-e

e-j-j

e - v - j

γ-ν-j

e-j-j-j-j

200

100

10

10

10

10

10⁻³

300

e-μ

γ-ν

μ-j-j

μ - v - j

e-j-j-j

v - j - j - j - j

ነሌ

200

M_{all} [GeV]

100

AN

10²

10⁻¹

300

۲

10

μ - μ

 $\overline{\gamma} - \gamma$

γ-j-j

i - i - i

300

200

Region of largest deviation

100

SM

H1 Data

- Invariant mass of all bodies
- All channels scanned and interesting regions defined
- Channels with 4 jets or more not considered

e-e: Region 110 < M_{all} < 120 GeV 5 obs. / 0.43±0.04

> [see Multi-Leptons, talk by D. South]

Most interesting channels in HERA-I

now P~0.3

[see Single top, talk by L. Bellagamba]

9 / 18

Global Significances

Significance
 Distributions
 investigated for
 e[±]p, e⁺p and e⁻p
 samples in the

 ΣP_{T} and M_{all}

distributions separately

 Channels with large deviations identified

Sensitivity of Topological Variables to BSM Signals

- Differences in the angular distributions of otherwise similar event signatures for SM and BSM processes are possible
- Tested with many BSM signatures (LQ, single top, ...)

Example:

Production and Decay of Excited Fermions (Electrons and Neutrinos)

- Defined for two-body channels
- Cosine of polar angle of leading (highest- $P_{\rm T}$) body in cms frame of the bodies
- All distributions scanned and interesting regions defined

 H1 Data
 SM
 Region of largest deviation

Distributions of Topological Variable X_{lead}

- Defined for channels with at least three bodies
- Energy fraction of leading body in cms frame of all bodies
- Sensitive to multi-body decay of new particles (eg. cascade decays)

Events

General Search at HERA G. Brandt

 $X_{\text{lead}} = \frac{2E_{\text{lead}}^*}{\sum_i E_i^*}$

G. Brandt

- A model independent search for new physics has been performed by H1 on the full HERA data (484 pb⁻¹)
- All high-P_T signatures were investigated

Summary

- Good overall agreement with the SM is observed in all channels
- Good understanding of detector and physics at HERA for all high-P_T phenomena demonstrated
- One of the broadest range signature searches done at a collider

Summary of Results in Search Channels

H1 General Search at HERA ($e^{\pm}p, 463~{ m pb}^{-1}$)							
Event class	Data	SM	$\hat{P}_{\sum P_T}$	$\hat{P}_{M_{\mathrm{all}}}$	$\hat{P}_{\cos\theta^*_{\rm lead}}$	$\hat{P}_{X_{\text{lead}}}$	
<i>j</i> - <i>j</i>	156724	153278 ± 27400	0.57	0.33	0.98		
e- j	125900	127917 ± 15490	0.090	0.99	0.40		
μ -j	21	19.5 ± 3.0	0.30	0.46	0.024		
ν -j	11081	11182 ± 1165	0.33	0.31	0.25		
e - ν	16	21.5 ± 3.5	0.13	0.084	0.62		
e- e	36	40.0 ± 3.7	0.35	0.041	0.52		
e - μ	19	21.0 ± 2.1	0.46	0.83	0.81		
μ - μ	18	17.5 ± 3.0	0.31	0.50	0.88		
γ -j	563	538 ± 86	0.31	0.21	0.77		
γ -e	619	648 ± 62	0.93	0.99	0.10		
γ - μ	0	0.22 ± 0.04	1	1	1		
γ - ν	4	9.6 ± 2.8	0.076	0.33	0.22		
$\gamma - \gamma$	1	1.1 ± 0.6	0.66	0.35	0.11		
<i>j-j-j</i>	2581	2520 ± 725	0.54	0.65		0.18	
e- j - j	1394	1387 ± 270	0.0044	0.70		0.28	
μ -j-j	1	0.46 ± 0.18	0.12	0.072		0.99	
ν -j-j	355	338 ± 62	0.80	0.48		0.62	
e- e - j	0	0.31 ± 0.04	1	1		1	
e - e - ν	0	0.06 ± 0.01	1	1		1	
e- e - e	1	0.22 ± 0.04	0.15	0.031		0.14	
μ - μ -j	0	0.16 ± 0.03	1	1		1	
$e - \mu - \mu$	0	0.37 ± 0.07	1	1		1	
μ - μ - ν	0	0.010 ± 0.005	1	1		1	
$e - \mu - j$	0	0.16 ± 0.04	1	1		1	
$e - \nu - j$	4	3.2 ± 0.5	0.24	0.57		0.095	
$\mu - \nu - j$	5	2.8 ± 0.5	0.27	0.30		0.35	
$e - \mu - \nu$	0	0.05 ± 0.01	1	1		1	
$\gamma - j - j$	5	6.7 ± 1.3	0.41	0.25		0.91	
$\gamma - e - j$	12	19.4 ± 4.0	0.31	0.28		0.53	
$\gamma - \nu - j$	1	4.5 ± 1.5	0.35	0.62		0.47	
e-j-j-j	19	22 ± 6.5	0.84	0.80		0.14	
ν -j-j-j	7	5.2 ± 1.4	0.47	0.39		0.017	
$\gamma - \nu - j - j$	0	0.16 ± 0.07	1	1		1	
$e - \nu - j - j$	0	0.15 ± 0.09	1	1		1	
γ -e-j-j	0	0.22 ± 0.07	1	1		1	
e-e- <i>v</i> - <i>i</i>	0	0.10 ± 0.06	1	1		1	
$e - \mu - \nu - i$	0	0.08 ± 0.05	1	1		1	
<i>j-j-j-j</i>	40	33 ± 13					
<u>e-j-j-i-i</u>	1	0.13 ± 0.06					
ν -j-j-j-i	1	0.05 ± 0.02					
<i>j-j-j-i-i</i>	$\hat{0}$	0.14 ± 0.09					

Sensitivity Compared to Dedicated Searches

- Yest the sensitivity of the method to new physics
- Anomalous top production via FCNC
 - → A decay t → bW would appear mostly in j-j-j, e-j- ν and μ -j- ν
 - → Evolution of $-\log_{10}$ P as a function of σ_{top}

- In j-j-j: $-\log_{10} \hat{\mathbf{P}} \sim 2$ for $\sigma_{top} = 0.5$ pb
 - From H1 dedicated analysis in hadronic channel: σ_{top} < 0.48 pb at 95% C.L.

$$-\log_{10} \mathbf{\hat{P}} \ge 3$$
 for $\sigma_{top} \sim 1.5$ pb

Sensitivity equivalent or slightly lower than dedicated searches

Yields and P-Values of Interesting Channels

General Search at HERA G. Brandt

	P [^] <0.01: significant deviation)			
e-j-j in e [±] p data Region: 175 < ΣP _τ < 27 obs. / 11.6±1.2	200 GeV	P^ = 0.0044		Other topologies studied elsewhere: Excited Fermions Analysis $e-\gamma$, ν -j-j, e -j-j, e -e-e,		
1 obs. / low SM expe e-e in e+p data	ctation	$P^{-} = 0.0071$ $P^{-} = 0.0035$		e-μ-μ, e-ν, ν-γ, e-ν-μ, e-ν Multi-Leptons Analysis e-e, e-e-e, e-μ, μ-μ, e-μ-μ		
Region: 110 < M _{all} < 5 obs. / 0.43±0.04	120 GeV		see	Multi-Leptons Analysis		
De viene ek evviene			a al lia			

Regions showing deviations in HERA-1 now checked in the full data:

μ-j-ν	now P^~ 0.3	5 obs. / 2.8±0.5 exp.	see Isolated Leptons and
e-j-ν	now P^~ 0.3	4 obs. / 3.2±0.5 exp.	Single Top Quark Analyses
-			

- e-e still interesting
- e-j now P⁺=0.09 in ΣP_T

visible in inclusive LQ/CI/q~ Analyses

Search Algorithm for Deviations from SM

Define regions (sliding expandable windows in histograms)

Look at all regions with a width > resolution

Assume Poisson-distributed background b_i with a Gaussian error G

Form pdf from the histogram by normalising (constant A) the distribution

Define **probability** p to observe N_{obs} events in regions fluctuating up or down from N_b predicted background events

$$p = \begin{cases} A \int_0^\infty db \, G(b; N_b, \delta N_b) \sum_{i=N_{obs}}^\infty \frac{e^{-b}b^i}{i!} & \text{if } N_{obs} \ge N_b \\ A \int_0^\infty db \, G(b; N_b, \delta N_b) & \sum_{i=0}^{N_{obs}} \frac{e^{-b}b^i}{i!} & \text{if } N_{obs} < N_b \end{cases}$$

Most interesting region is the one with the minimum *p*_{min} (= largest deviation)

 $p_{min} < 0.01 \rightarrow significant deviation$

Developed by H1 for HERA-I data [PLB 602, 14 (2004)]

Search algorithm looks for region with greatest deviation from SM

Bias towards fluctuations?

Quantify this ...

 \hat{P} : Probability to observe a region with $p < p_{min}$ in a given channel

Calculated with toy experiments based on SM prediction for one channel

 \hat{P} = Ratio of toy experiments with $p_{min}^{toy} < p_{min}^{data}$ and number of toy experiments

The smaller \hat{P} the more interesting the channel

Can be used to compare results of different channels

Global Significance: -log₁₀P[^] Distribution

General Search at HERA G. Brandt

Quantify the expectation for \hat{P}

Do many toy experiments based on SM background simulating the whole HERA data

Apply the search algorithm

Get a MC prediction for

Now we can look at all channels simultaneously, comparing them to each other and the MC prediciton

Most interesting channels are on the right of the distribution $-log_{10}\hat{P}$

Refined Topological Analysis

General Search at HERA G. Brandt

Good overall agreement in distributions of topological variables Most interesting region still not so interesting (p=0.017 in v-j-j-j)

Further reduce samples to select events with Leading body emitted in forward direction or with

Topologies expected for bodies from sequential resonance decay

 $\cos\theta^*_{\text{lead}} > 0$ $0.75 < X_{\text{lead}} < 0.9$

Event class	Selection	Data	SM	$\hat{P}_{\sum P_T}$	$\hat{P}_{M_{\mathrm{all}}}$
<i>j-j</i>	$\cos \theta_{\text{lead}}^* > 0$	83155	82800 ± 15610	0.46	0.44
$e extsf{-}j$	$\cos \theta_{\text{lead}}^* > 0$	6532	6603 ± 783	0.23	0.033
u-j	$\cos \theta_{\text{lead}}^* > 0$	2177	2076 ± 240	0.61	0.75
γ - j	$\cos \theta_{\text{lead}}^* > 0$	123	118 ± 20	0.15	0.016
γ - e	$\cos \theta_{\text{lead}}^* > 0$	227	260 ± 25	0.12	0.19
j-j-j	$\cos \theta_{\text{lead}}^* > 0$	1359	1218 ± 340	0.36	0.63
$e extsf{-}j extsf{-}j$	$\cos \theta_{\text{lead}}^* > 0$	65	74 ± 13	0.75	0.37
u-j-j	$\cos \theta_{\text{lead}}^* > 0$	58	53 ± 12	0.62	0.26
j-j-j	$0.75 < X_{\text{lead}} < 0.9$	1672	1658 ± 482	0.096	0.40
e- j - j	$0.75 < X_{\text{lead}} < 0.9$	419	419 ± 81	0.018	0.07
u-j-j	$0.75 < X_{\text{lead}} < 0.9$	133	109 ± 22	0.26	0.19

H1 General Search at HERA ($e^{\pm}p$, 463 pb⁻¹)

j-j-j also in single top analysis e-j-j also in kinematic scan

Still good agreement of data and SM in all channels Still no region with significant deviation p < 0.01 identified

Distributions to differentiate SM and BSM

Look into distributions of typical variables sensitive to BSM signals

Investigate both kinematic ...

... and **topological** properties of signatures

Cosine of polar angle (2 bodies) or **energy fraction** (> 3 bodies) of leading (highest P_{τ}) body in cms frame of all bodies

