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Overview

• HERA, H1 and DIS

• Recap - Fragmentation Function results.

• NEW - Charge asymmetry of the hadronic final state!
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H1 Physics usable sample ~500 pb-1

electrons or positrons

4 different proton energies
polarised lepton beams

 Protons   920 GeV 

 Electrons   27.6 GeV 
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k
k’ q=k-k’

Q2 = -q2
“virtuality”

“inelasticity”

y = Eγ/Ee

Q2 = SxBJy
relationship

√S = 318 GeVe±

γ/Z

Neutral Current DIS

xBJ P
“Quark momentum”
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almost 4π detector coverage 15 metres long and 10 metres high, weighed 2800 tons.
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Scattered electron 
acceptance at high Q2

20o
155o

Tracking acceptance of 
hadronic final state

10o
150o

Kinematic phase space
100 < Q2 < 8,000 GeV2

0.05 < y < 0.6
θelectron>150°

30° < θq,lab < 150°

quark scattering angle, θq,lab, calculated from 
kinematics. Ensures current region of Breit 

frame remains within tracking acceptance. Easy 
to calculate in theory!

K0, Λ, etc.. considered as stable
D(xp) correction factor < 1.2. 

Asymmetry correction factor ~1.0
systematics partial cancel

D(xp) systematic error ~5%
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5 Event shape variables
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Inclusive jets in the Breit frame are O(ααs)

at lowest order (current quark has no ET )

Provides clearest separation between particles

from hard scattering and p-remnant.

Allows for easy comparison with e+e− data

In this analysis sums extend over all particles

in current hemisphere of the Breit frame

(for Kout the region extended to η < 3)

Event shape variables, F

τ = 1−Tγ with Tγ =
∑

h |"pz,h|∑
h |"ph|

τC = 1−TC - thrust along the axis

maximising T (like in e+e−)

B =
∑

h |"pt,h|
2

∑
h |"ph| – Jet Broadening

ρ = (
∑

h Eh)2−(
∑

h "ph)2

(2
∑

h |"ph|)2 – Jet inv. mass

C = 3
2

∑
h,h′ |"ph||"ph′| sin2 θh,h′

(
∑

h |"ph|)2

Kout =
∑

h |pout
h |

χ =
∑

h,i(π-|φh-φi|)

(2 + 1) jet is

minimal nontrivial

confi guration

F →0 for Born level,

F > 0 in case of multijets

Provides clearest 
separation between 

particles 
from hard scattering 
and proton remnant. 

Allows for easy 
comparison with e+e− 

data 

current region energy scale 
is Q/2

boost to breit frame 
means we measure down 

to pbreit =0!

ep→eX e+e-→qq
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0 1

Q increasing

xp = scaled momentum variable

Q = Scale in current region of Breit Frame

ph = momentum of charged track in current 
region of Breit Frame

D(xp) = event normalised, charged particle, scaled momentum spectrum

Observable D(xp) 

As Q increases 
D(xp) gets softer, 
i.e. more tracks 

with small share of 
initial scale 

0 1

Q increasing

xp = scaled momentum variable

Q = Scale in current region of Breit Frame

ph = momentum of charged track in current 
region of Breit Frame

D(xp) = event normalised, charged particle, scaled momentum spectrum

Observable D(xp) 

xp = scaled momentum variable

Q/2 = Scale in current region of 
Breit Frame

ph = momentum of charged particle 
in current region of Breit frame

D(xp) = event normalised, charged particle, scaled 
momentum distribution

xp
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0.0 - 0.02 (x30)

0.02 - 0.05 (x5)

0.05 - 0.1 (x2)

0.1 - 0.2

0.2 - 0.3

0.3 - 0.4

0.4 - 0.5

0.5 - 0.7

0.7 - 1.0

Reasonable agreement between ep and e+e- / Monte 
Carlo - broadly supports quark fragmentation 

universality. H1 Collab., F.D. Aaron et al., 
Phys.Lett.B654:148-159,2007
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Charge Asymmetry
Motivation
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Quark contribution to PDF

Lowest Q2 bin has 
average x~ 0.005. 

sea quarks 
dominate - 
u≈d≈s≈

ubar≈dbar≈sbar

At low Q2 / low xBJ 
expect that the proton 
PDF will be dominated 
by sea quarks and the 

gluon
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Quark contribution to PDF

Highest Q2 bin has 
average x~ 0.1. 
valence quarks 

dominate u>d>>s, 
ubar, dbar, sbar

At higher Q2 / large xbj 
expect that the proton 

valence quarks will 
make significant 

contribution
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0 1

Q increasing

xp = scaled momentum variable

Q = Scale in current region of Breit Frame

ph = momentum of charged track in current 
region of Breit Frame

D(xp) = event normalised, charged particle, scaled momentum spectrum

Observable D(xp) 

xp

Hadrons from fragmentation are produced 
at low xp. Expect these to be charge 

symmetric

At large xp single hadron caries 
most of the momentum of 

scattered quark. 

Possible that this hadron 
also carries other 
quantum numbers?

(charge, strangeness, etc...)

Expect that the D(xp) distribution good way of separating 
fragmentation effects (low xp) from hard interaction (large xp). 
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Charge Asymmetry 
Charge sign asymmetry of RHIC data shown to 
be sensitive to valence quark distribution when 

analysing fragmentation data.
Albino, Kniehl & Kramer hep-ex/0803.2768

Suggested at last DIS conference to look at charge 
identified D(xp) to help investigate differences seen 

between data and NLO predictions.
Kniehl, comment DIS08
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NLO theory does not describe the DATA! 

Fragmentation 
functions  (KKP, 

KRETZER, AKK)taken 
from fits to e+e- data

Scale and PDF 
errors small

Sensitivity to 
different FF

Possible to get NLO prediction for D(xp)  

H1 Collab., F.D. Aaron et al., 
Phys.Lett.B654:148-159,2007
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Charge Asymmetry
Results
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At low xp similar 
distribution for positive 
and negative particles 

At large xp there is a clear 
difference between the 

pos and neg distributions 

Difference described 
by Monte Carlo
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THE CHARGE ASYMMETRY 

AS A FUNCTION OF XP

THE ASYMMETRY IS 

COMPATIBLE WITH ZERO AT 

LOW XP AND GROWS TO BE AS 

LARGE AS 20 % AT HIGH XP

MONTE CARLO MODELS 

REPRODUCE THE MAGNITUDE 

AND EVOLUTION OF THE 

ASYMMETRY

HERWIG DIFFERENCES 

CONSISTENT WITH 

PREVIOUS OBSERVATIONS

pos− neg

pos + neg
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Compatible with zero at 
low xp, reaches ~20% at 

high xp

Asymmetry =

Magnitude and 
evolution described by 
various Monte Carlo 

models

HERWIG has some 
differences at large xp but 
still consistent with data
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Quark level prediction 
obtained from CDM 
Monte Carlo with 

hadronisation turned off

Similar asymmetry between 
data and CDM at large xp

Consistent with 
expectation that 

fragmentation dominates 
at low xp, hard interaction 

at large xp 
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At low Q2 (low xBJ) 
all xp,  pos and neg 
distribution similar

As Q2 increases clear 
differences develop at 
high xp, low xp they 
remain consistent
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At low Q2 (low xBJ) all 
xp,  asymmetry ~0

As Q2 increases 
asymmetry develops at 

high xp, low xp it 
remains  ~0

Monte Carlo models are 
able to describe the 

magnitude and evolution 
of the asymmetry
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Conclusions

• First Observation of the charge asymmetry of the 
Hadronic final state in High Q2 DIS.

• Method is general and can be applied to other 
environments (γP, PPbar,PP).

• Asymmetry dependent on xp and gets larger with 
larger Q2 (xBJ). Results consistent with expectation  
from charge asymmetry of valence quarks.

• Provides useful data for extraction of fragmentation 
functions and valence quark distribution
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BORN
LO 
BGF NLO

LO QCD Compton
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Pretty good agreement 
between ep and e+e- !

high Q2 and small xp

reason unclear

low Q2, mid xp.
expected to be due to BGF 
kinematics producing empty 

current region

NB: suppressed zeros
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CDM and PS acceptable 
description of data.

both tend to overestimate 
the multiplicity at high Q2

SCI model predicts too soft a 
spectrum

HERWIG is too hard and fails 
to reproduce scaling violations 

seen in the data
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NLO pQCD

Fragmentation Functions - e+e- fits

CYCLOPS

σh = PDF ⊗ M.E. ⊗ FF

KKP

AKK

KRETZER

Infra red safe region (Q2>100), xp > 
0.1

FF parameterised from xp>0.1

CTEQ6M, Λ(5)QCD = 226 MeV (also ME + FF)
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Quark tagging (H1)
Identify quark flavour at e.w. vertex

ep → h + X
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In principle, ep and e+e− together can separate uds FFs

Simon Albino (Hamburg University) HERA and the LHC, 12-16 March 2007 Fragmentation at HERA – p. 7/18
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