QCD - Experiment

Deep inelastic scattering Parton densities Jet algorithms Jets at HERA & Tevatron

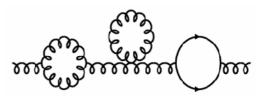
Legs and loops Underlying event Diffraction EPS, Krakow July 22, 2009

Peter Schleper Institute for Exp. Physics Hamburg University

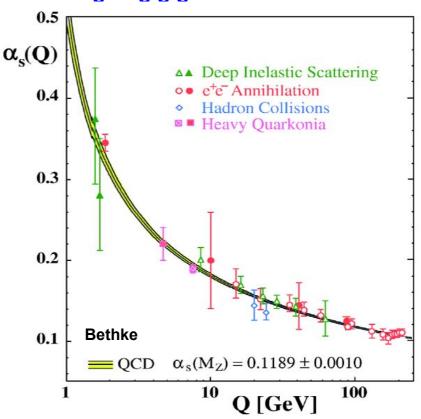
Bundesministerium für Bildung und Forschung

Introduction I

Strong Interaction


- SU(3)_c, prototype of non-abelian gauge theory
- Proton as fundamental state of QCD

Predictions of QCD:


- Scale-dependence of α_s(Q²)
- Hard processes: Q² large
 Matrix elements in LO, NLO, NNLO, ...
- Scale-dependence of parton densities f_{u,d}(x,Q²) quarks

 $f_g(x,Q^2)$ gluons

α_s(M_Z²) world averages (data until 2005)
 0.1189 (10) Bethke '08 Prog.Part.Nucl.Phys.58:35
 0.1176 (20) Particle Data Group '08
 see below for more recent data

 $q \rightarrow q g$ Quark-Gluon Vertex $g \rightarrow g g$ 3-Gluon Vertex $g \rightarrow g g g$ 4-Gluon Vertex

Peter Schleper, Hamburg University

EPS 2009, Krakow

QCD 2

Introduction II

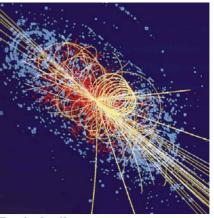
Area of Hadron- Colliders:

•	HERA:	e±p	E _{CMS} = 320 GeV
•	Tevatron:	p-pbar	E _{CMS} = 2 TeV
•	LHC:	рр	E _{CMS} = 14 TeV

QCD applications to hadronic collisions:

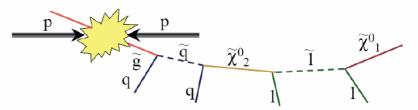
- QCD factorisation(s)
- Parton-densities of the proton
- α_s
- Jet algorithms
- QCD matrix elements in LO, NLO, NNLO

(for theory see talk by Anastasiou)

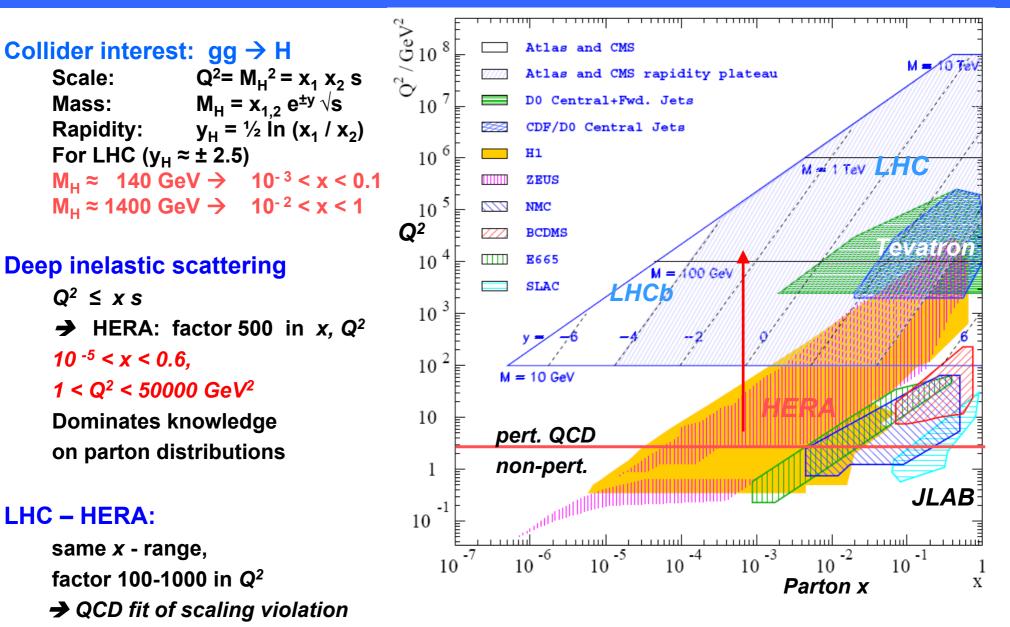

- Multi-leg final states
- Soft processes: underlying event, diffraction

This conference:


- 91 talks in parallel sessions
- → Thank you for the valuable discussions
- \rightarrow Apologies for results that cannot be shown in 25 min.


Peter Schleper, Hamburg University

3

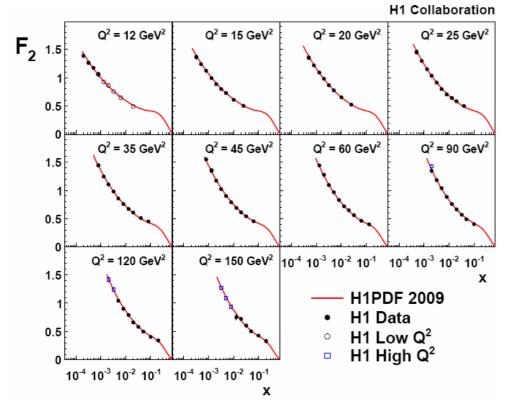


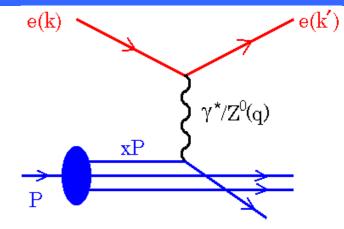
Factorization

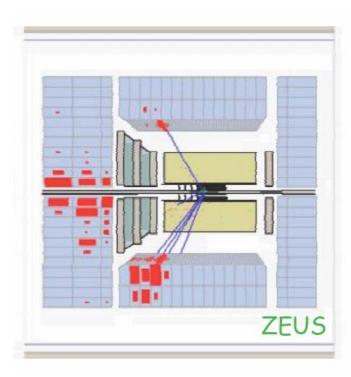
Parton Distributions (PDF)

Peter Schleper, Hamburg University

EPS 2009, Krakow

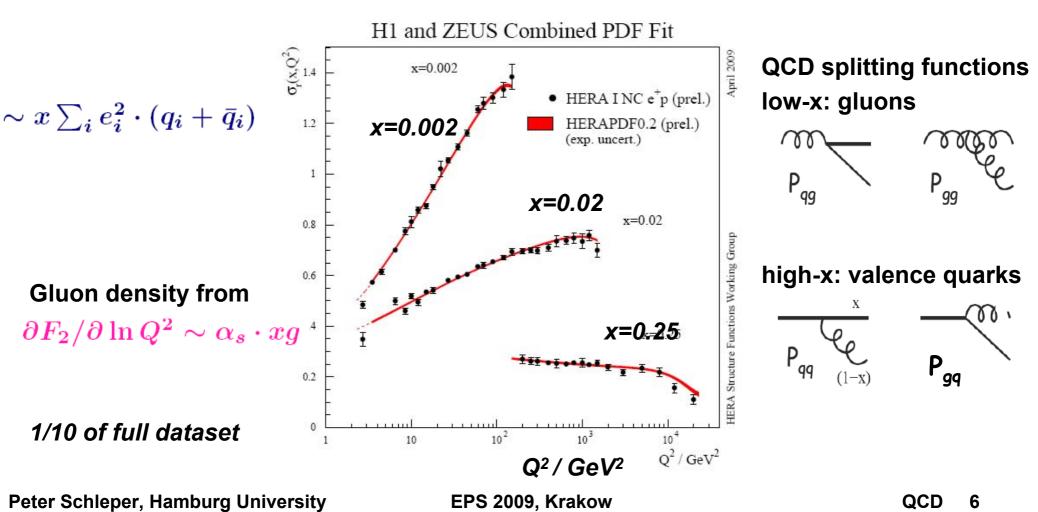

QCD 4


Inclusive Deep Inelastic Scattering

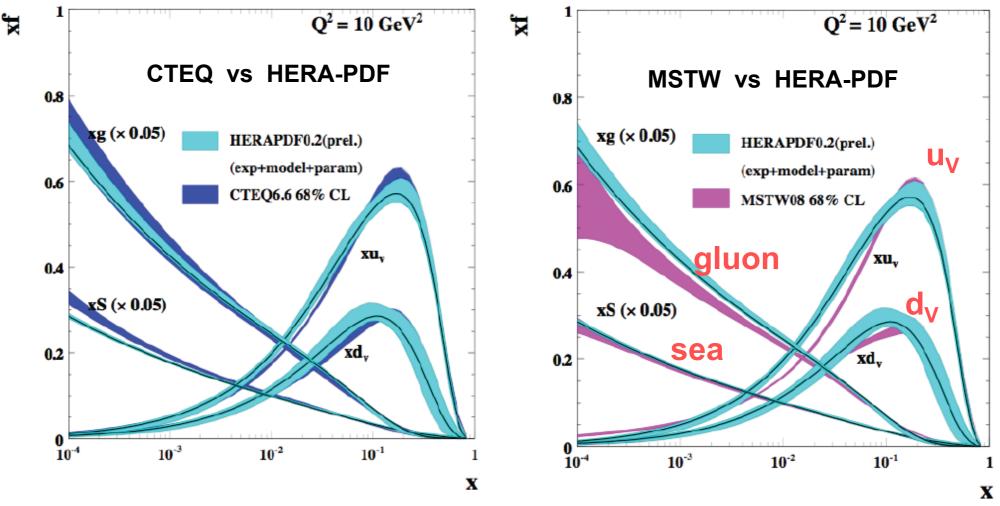

HERA data: e_L^- , e_R^- , e_L^+ , e_R^+

- ~ 500 pb⁻¹ data per experiment final statistics
- ~ 10⁸ ep collisions triggered by H1 & ZEUS
- Thresholds: P_T > 5 ... 10 GeV for electrons and jets
- H1, ZEUS: newly published data

 $\Delta \sigma \sim 1.3 \dots 3 \%$, except at high x, Q^2



Peter Schleper, Hamburg University


Inclusive Deep Inelastic Scattering

HERA Structure function working group

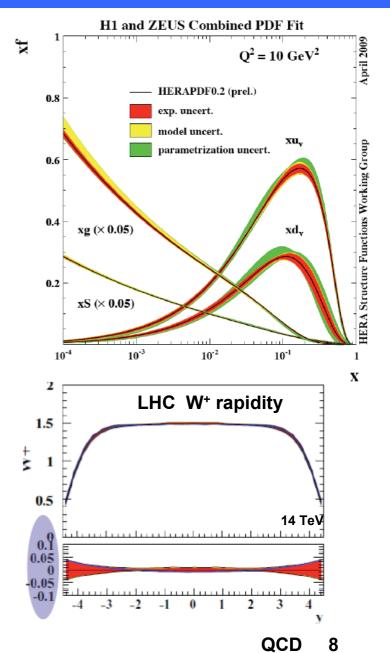
- Combined cross section: cross calibration of systematics: $\Delta \sigma \sim 1 \dots 2 \%$ H1, ZEUS results are compatible: χ^2 / ndf = 637 / 656
- NLO QCD Fit: HERA-PDF 0.2

QCD Fits of Parton Densities I

Errors reflect different treatment of experiments, model uncertainties, $\alpha_{s.}$...

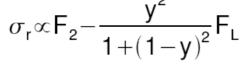
QCD Fits of Parton Densities II

1. Heavy flavour treatment at threshold


Thorne-Roberts variable flavour number scheme

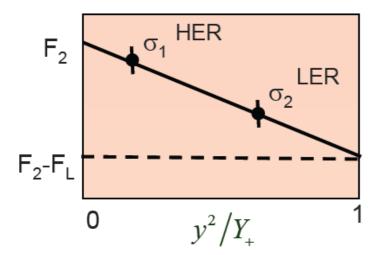
2. Choice of PDF parameterization at $Q_0^2 \sim 2GeV^2$

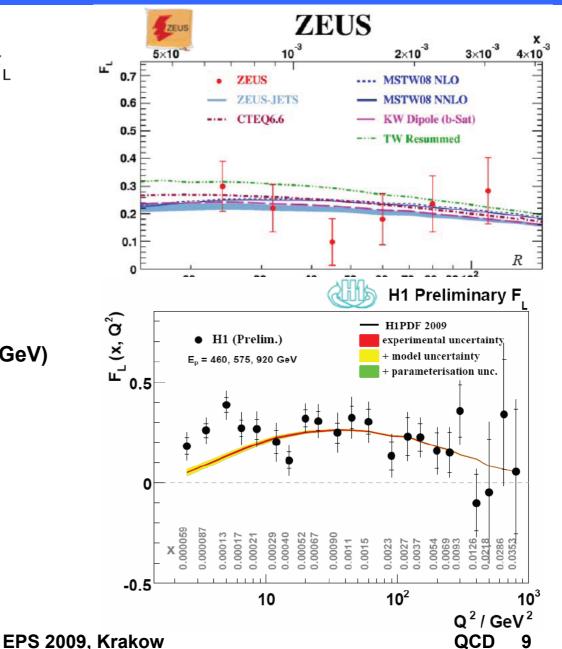
- Restrictive: valence-like gluon at low-x
- Fixed
- Free: Neural-Network approach
- HERA-PDF: allow to vary (for high-x)
- 3. Choice of experimental data
 - MRSW, CTEQ: fits HERA, fixed target, DY, Jets, ..
 - ➔ Incompatible experiments
 - $\Delta \chi^2 \sim 50$ to compensate for unknowns
 - ➔ Errors of PDF do not have a statistical meaning
 - HERA-PDF: only fits own data
 - → excellent understanding, $\Delta \chi^2 \sim 1$
 - ➔ Need to improve on u/d separation with HERA-II data of Z,W exchange, Jets
- 4. NNLO Alekhin, MRSW


→ Test PDF with F_L, heavy quark, Jet production

Peter Schleper, Hamburg University

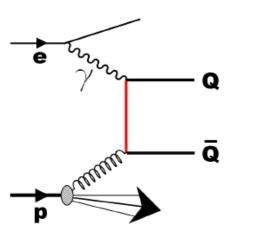
F_L and gluon density


Cross section:

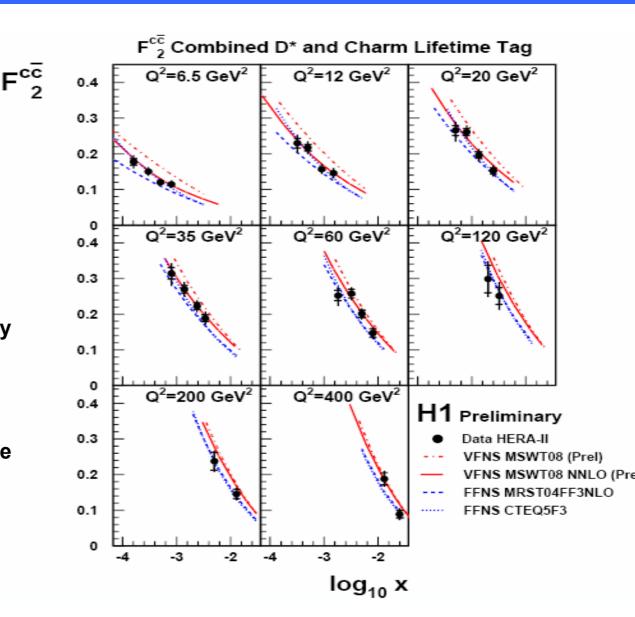

- F_2 : transversely polar. γ^*
 - sea and valence quarks,
 - gluon via scaling violations
- \mathbf{F}_{L} : long. polar. γ^{\star}
 - direct measure of gluon density
 - different helicity structure

Disentangle F_2 and F_L

• data at different E_{CMS} (225 ... 318 GeV)



Peter Schleper, Hamburg University



Parton Densities and Charm

Charm Production at HERA

- Depends in LO on gluon density
- NLO known
- multiple scales (m_Q, Q^2, p_T) e.g. large logs when $Q \gg m$
- Test of Variable Flavour scheme massive for µ²≈mc² massless at µ²»mc²
- Few % check of gluon density and VFNS

Jet Algorithms 1/2

Infrared safe

- Jet reconstruction insensitive to emmission of soft gluons
- Experiments: soft energy from noise, underlying event, pile-up supressed by detector thresholds, B-field

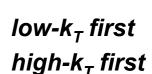
Collinear safe

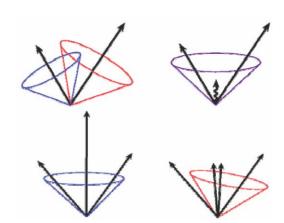
- Jet reconstruction insensitive to collinear splitting of partons
- Experiments: non-linear calorimeters
- ➔ Yes, for experimental and theoretical reasons for cross sections and for searches:
 - discoveries should be safe against noise, underlying event, pile-up, NLO tests

Sequential algorithms: safe

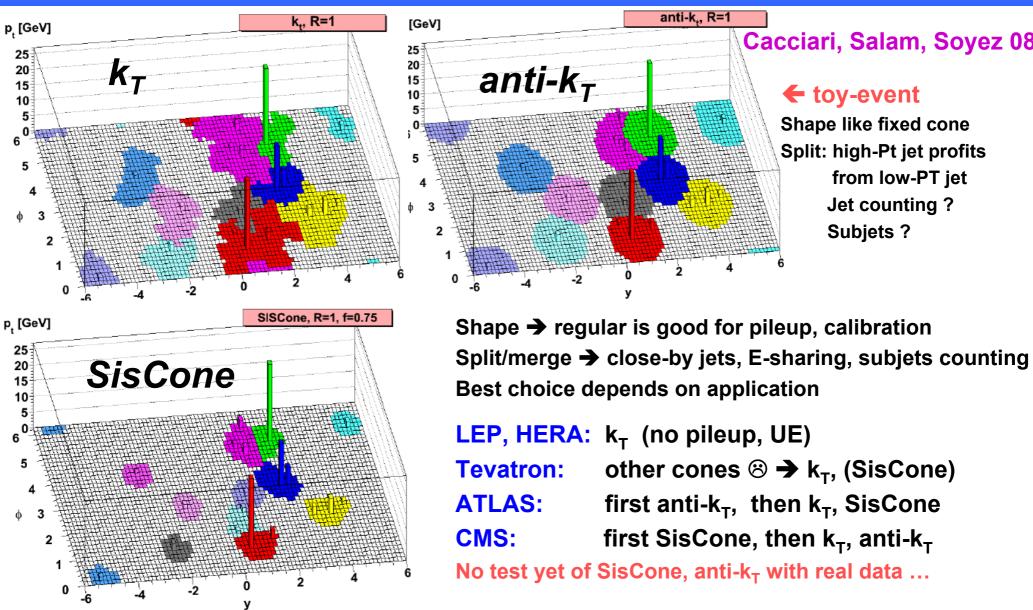
- Durham (e⁺e⁻) or k_T (ep, pp)
- anti-k_T (Cacciari, Salam, Soyez 08)

Cone-Algorithms $R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

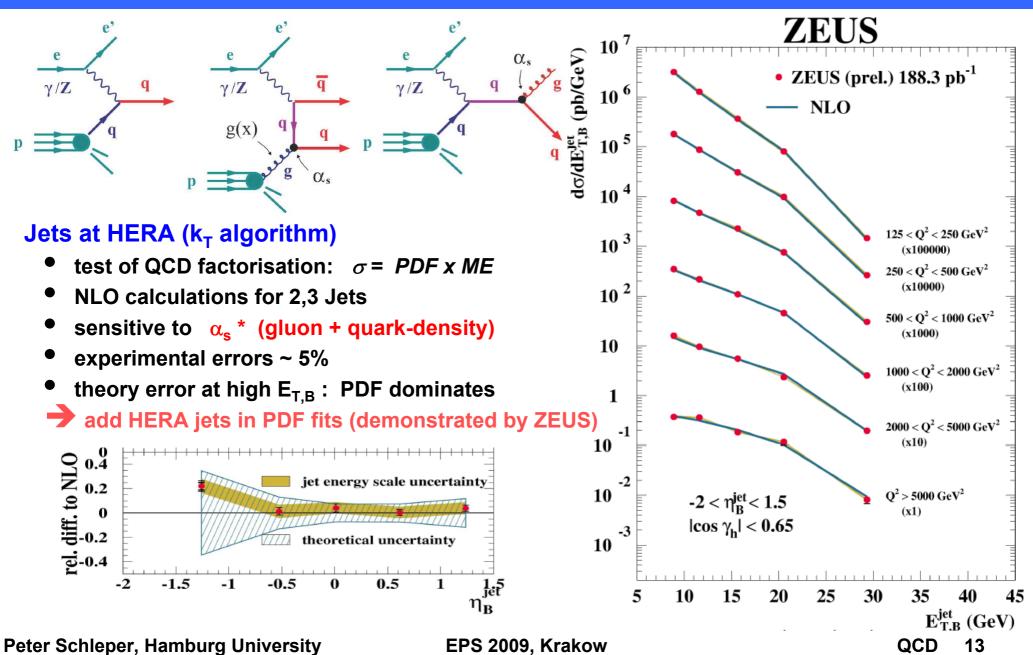

- SisCone: seedless infrared-safe (Salam, Soyez 07)
- Others: not infrared-safe


Peter Schleper, Hamburg University

EPS 2009, Krakow


QCD 11

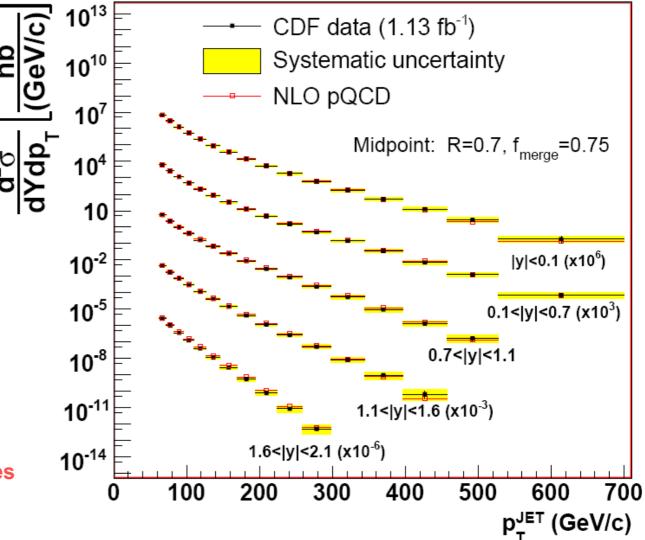
combine particles with min D_{nm} $D_{nm} = min(k_{Tn}^2, k_{Tm}^2) R/R_0$ $D_{nm} = min(k_{Tn}^{-2}, k_{Tm}^{-2}) R/R_0$



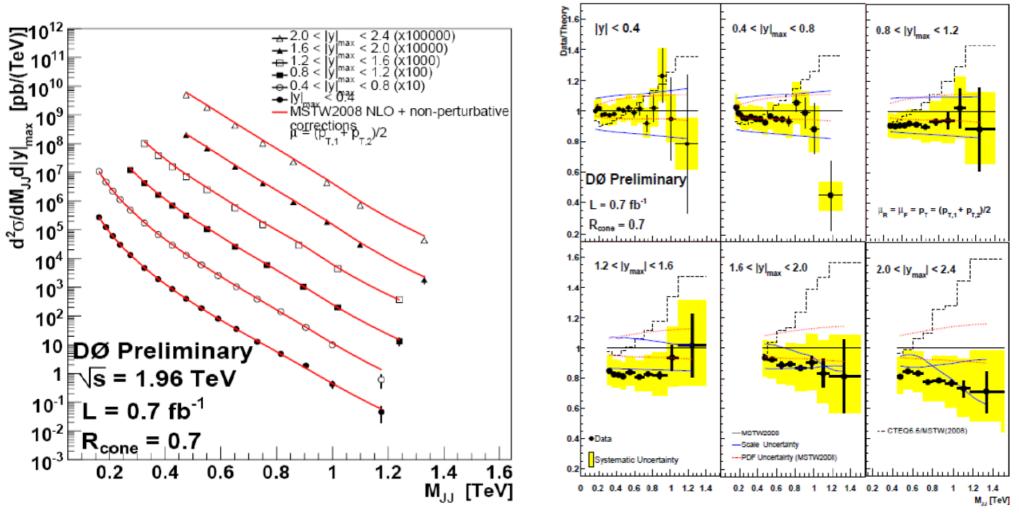
Jet Algorithms 2/2

Peter Schleper, Hamburg University

Parton Densities and Jets


Collider Jet Data

CDF & D0:


 Much improved calibration and error analysis

CDF:

- Inclusive jet cross-section
- Midpoint algorithm for data
- "Similar agreement for Kt and SisCone", dominated by simple 2-jet configurations
- ➔ Input for fits of parton densities

Collider Jet Data

D0: similar size of experimental error, NLO scale uncertainty, and PDF uncertainty used to constrain new physics

Jets and α_s

1 H1 1 H1 b) a) Jet ratios from HERA 200 < Q²< 270 GeV² $150 < Q^2 < 200 \text{ GeV}^2$ 101 101 σ_{2-jet}/σ_{NC} σ(2-jet) / σ_{incl}., σ(3-jet) / σ_{incl}. 10-2 10* PDF uncertainties cancel in bins of x-parton precise α_{s} (M₇) = 0.1168 ±0.0007 (exp.) 1.2 1.2 1.0 1.0 œ ±0.0016 (PDF) 0.8 0.8 10² 10^{2} 10 +0.0046 -0.0030 (th.) ¹ H1 H1 C) d) 270 < Q²< 400 GeV² 400 < Q² < 700 GeV² Normalised Jet Cross Sections 10" 10" $\sigma_{2-jet}/\sigma_{NC}$ α_{s} - H1 Combined H1 data (incl., 2-, 3-jet) 10" 10-2 α_{s} fit 0.20 1.2 1.2 1.0 1.0 œ Theory uncertainty 0.8 0.8 10⁻² 10⁻² 101 101 H1 H1 e) scale error from NLO 700 < Q² < 5000 GeV² 5000 < Q²< 15000 GeV² 0.15 G2-jet[/]GNC 101 H1 Data 10-2 NLO⊗ hadr 10-3 10-1 1.2 1.2 1.0 1.0 œ 0.10 0.8 0.8L 10⁻² 101 10^{2} 101 10² 10 x - parton Q / GeV

Peter Schleper, Hamburg University

EPS 2009, Krakow

QCD 16

Normalised 2-Jet Cross Section

α**_s(M_**) experiment 0.11 theoretical uncertainty Jets at HERA Inclusive, 2, 3- jets, shaoes, subjets ZEUS: Jets in γ p (2008) Best value so far α_{s} (M_Z) = 0.1168 ± 0.0007 (exp.) ZEUS: Jets in γ p (2003) ± 0.0016 (PDF) + 0.0046 -0.0030 (theo.) Progress on $\alpha_{\rm s}$ and PDF requires NNLO H1: Jets at low Q2 (2008) H1: Multi-Jets at high Q² (2009) **Event shapes at LEP** Dissertori et al, arXiv:0906.3436 ZEUS: Jets at high Q² (2009) see talk by Anastasiou first NNLO+NLLA ~ 5% spread between observables e*e⁻ four-jet rates α_{s} (M_z) = 0.1224 ± 0.0014 (exp)

as

- ± 0.0012 (had)
- ± 0.0035 (theory)

world average (S. Bethke 2006)

0.13

Multi-Leg Monte Carlos

DØ Run II, L=1.0 fb1

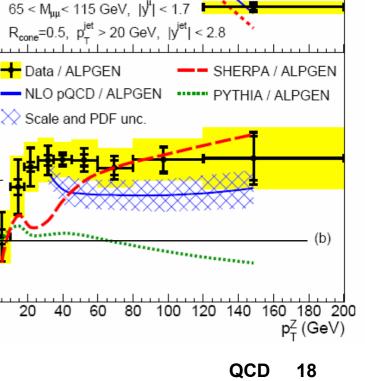
 $Z/\gamma^*(\rightarrow \mu\mu)$ + jet + X

🛨 Data / ALPGEN

Satio Ratio

Top, Higgs, Susy:

- y sensitive to proper modelling of kinematicsTevatron, LHC potential can only be fully exploited with excellent multi-leg Monte Carlosarlo: $<math display="block">2 \rightarrow 2 + PS h^{-1}$


Monte Carlo:

- (Pythia, Herwig)
- LHC: LO multi-leg Monte Carlos widely used (Sherpa, Alpgen, MadGraph, ...)
- Interface between Parton-Showers and NLO MC@NLO, ...

Tevatron Z + jet analysis

- **Midpoint algorithm**
- above P_{TZ}>30 GeV
 - NLO agrees within errors
 - Alpgen, Pythia predict lower cross sections (1.7)
 - SHERPA has different slope in PT

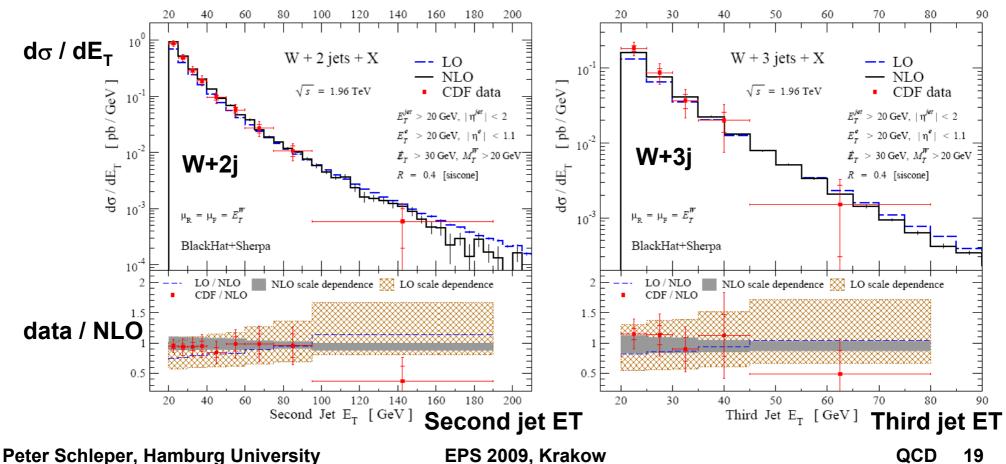
- Data

 NLO pQCD + corr. $\mu_{p} = \mu_{r} = M_{Z} \oplus p_{T}^{Z}$ CTEQ6.6M PDF

> $\mu_{p} = \mu_{r} = M_{Z} \oplus p_{T}^{Z}$ CTEQ6.1M PDF

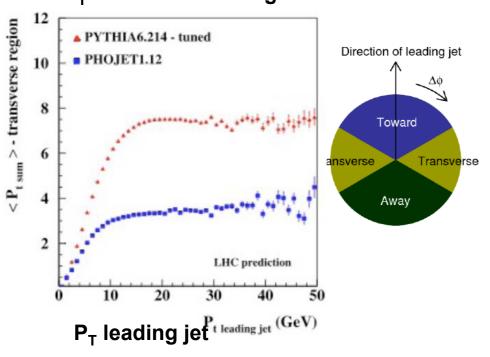
> > (a)

ALPGEN

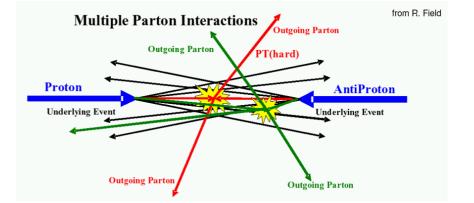

Multi-Leg NLO

New techniques for multi-leg NLO calculations (see talk by Anastasiou)

full NLO for W+3jet at Tevatron

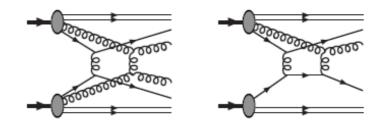

Berger et al, arXiv:0907.1984

- Much reduced scale uncertainty (~10%)
- NLO: SisCone CDF: JETCLU 0.32 fb⁻¹
- First successful test of NLO automation, much more precise data to come



Underlying Event

- Large correction to jet rates at Tevatron
- Models, no firm QCD predictions
- Needs to be measured in early data a la CDF, D0
- ➔ Mean values and fluctuations



<P_T> in transverse region

Modelling of Underlying event

• Multi-parton interaction (MPI) or rescattering

- CDF,D0 measure topology of γ +3jet
- 25% of events due to MPI at P_{TJ2} = 25 GeV

Physics of MPI strongly related to low-x physics, transverse proton structure, skewed PDF, diffraction, ...

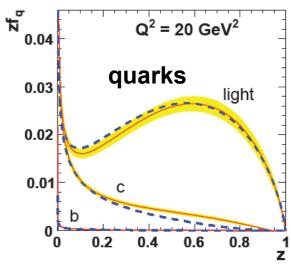
Peter Schleper, Hamburg University

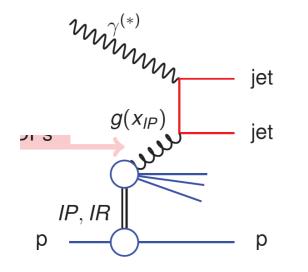
EPS 2009, Krakow

QCD 20

Diffraction

Exclusive hard scattering


- $ep \rightarrow ep + X$
- QCD factorisation (Collins)
- Test Universality via NLO QCD fit
- works for inclusive, 2-jet, charm


HERA: Consistent picture

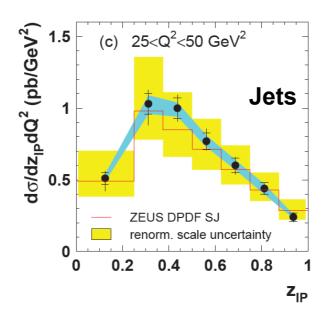
Gluon dominated process

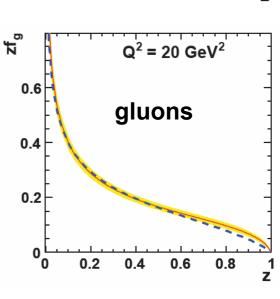
Tevatron:

Needs large non-pert. corrections

 X_{IP}

 $\gamma(Q^2)$


р


QCD collinear

factorization at

fixed *x*_{IP}, *t*

EPS 2009, Krakow

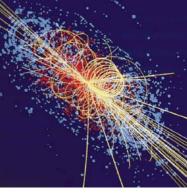
QCD 21

Conclusion

Parton densities:

- big step seen in HERA-PDF from combining HERA-I data,
- HERA-II will improve at high-x
- major improvement will need NNLO for jets in ep collisions: eq \rightarrow e jj, also for α_s

Legs and Loops:


- ground breaking new developments for NLO with 3,4 ... legs
- tests at Tevatron require (again) change of jet cone algorithms
- physics program of LHC requires excellent understanding of multi-leg (NLO) Monte-Carlos

Soft processes:

- Underlying event and minimum bias processes poorly modeled
- Hopefully not a bottleneck for understanding first LHC data
- New QCD toolbox needs to be tested / tuned at Tevatron and HERA
- QCD at LHC will be much more exciting than anticipated with these tools in place

LHC program for start-up

- Underlying Event
- Jet Shapes
- Dijet Angular Decorrelation
- Inclusive Jet Cross Section
- Dijet Mass and Ratio, Angle
- Event Shapes
- Multi-Jets

