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IntroductionIntroduction
 Discoveries are limited by detector advances

– Must keep pace with moving scientific frontiers, and accelerators
– Detectors can rejuvenate accelerator programs

 Large challenges posed by future scientific opportunities
• sLHC
• ILC
• Super B
• Neutrinos
• Dark Matter
• Astro

 Many promising technologies advancing
– Impossible to do justice - apologies for biases and omissions

many 
common
challenges
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ChallengesChallenges
 Precision - energy, momentum, time, space
 Speed/Occupancy
 Radiation Hardness/Background Rejection
 Power/Cooling
 Cost

 Progress presented in several recent major conferences
– IEEE Nuclear Science Symposium, Dresden, October, 2008
– TIPP09, Tsukuba, March, 2009
– 11th Pisa Meeting, May, 2009
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EnablingEnabling  AdvancesAdvances
 Segmentation

10-300 µm Si pixels, Si Cal, MPGDs

 Speed & Power
Faster electronics, lower noise

 Integration
Microelectronics, mechanics

 Materials
Sensor, rad hard, robust, thin

 Radiation immunity
Understanding, design, annealing

307 Mpixel SLD vxd3

16x128 DEPFET-Matrix

LC - Maintain segmentation
with increased speed



July 21, 2009 J. Brau      EPS-HEP     Krakow 5

The EnterpriseThe Enterprise
 Applications

– Colliders
• Vertex
• Tracker
• Calorimeter
• PID, incl. muon

– Dark Matter Detectors
– Neutrinos
– Ground-based
        Particle Astro
– Space

 Core Technologies
– Silicon
– Gas
– Crystals
– Liquids
– Readout, Electronics
– Services, Power, Cooling,

Support, Materials
– Metrology
– Trigger, DAQ

Parallel

Advances
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ATLAS and CMSATLAS and CMS

 Successful Construction & Commissioning established critical
lessons for future

 Upgrades for increased LHC luminosity
– 1035 for sLHC at end of decade (shutdown ~2017)

 Inner trackers
– Complete replacement (even for lower luminosity due to

accumulated radiation)
– Radiation damage limits
– Increased rate (eg. ATLAS TRT)
– Improved granularity - for pattern recognition

 Other systems will need some upgrades, esp. electronics
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Linear Collider DetectorsLinear Collider Detectors
 Goals - exceptional precision and time stamping

– Bunch train is ~3000 bunches over 1 msec (ILC)
 Vertex detectors

– < 4 µm precision w/ ~20 µm pixels
 Trackers

– σ(1/p) ~ few × 10-5

 Calorimeter
– 3-4% σ(Ejet)/Ejet for Ejet > 100 GeV
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Heavy Flavor ExperimentsHeavy Flavor Experiments
 LHC-b

– Radiation - rad-hard vertex locator
 Super B

– Reduce scattering in tracker - thinner
– Endcap crystals - radiation
– Endcap PID

 NA62 (K+ → π+ ν ν)
– giga-tracker
– RICH

 MEG (µ  →  e γ)
– Liquid Xe Calorimeter

• purity, cal response, calibration
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NeutrinosNeutrinos
 Current and recent advances

– MPPC (SiPMs) at T2K
– NOvA (seg. Liquid Scintillator)

 Future (toward the ~MegaTon detector)
– Large liquid argon - tracking
– New PMTs (low cost) - H20 Ch

Cherenkov
Charged
particle

NOvA

SuperK

-T2K
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Direct Dark Matter DetectionDirect Dark Matter Detection
 large mass
 low energy threshold (a few keV)
 background suppression

– deep underground
– passive shield
– low intrinsic radioactivity
– gamma background discrimination

 Signatures
– Ionization
– Scintillation
– Phonons

– See Elena Aprile’s talk for R&D on Nobel liquids
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SiliconSilicon
 Construction/commission experience of LHC and Fermi
 Future challenges

– Increased rate and radiation at sLHC
– Increase precision for ILC and B factories
– Specialize applications, such as NA62 Gigatracker

ATLASATLAS

FermiFermi
CMSCMS
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sLHC sLHC TrackingTracking
 Intense Radiation Levels

– 1016 /cm2 @ 5 cm (~400 MRad)
– 1015 /cm2 @ 20 cm (~40 MRad)
– 2 × 1014 /cm2 @ 50 cm (~10 MR)
(dictates technology for tracker)

 R > 20 cm
– Silicon Strips (> 60 cm)
– Pixels (20 - 60 cm)

 R< 20 cm
– New technologies

 300-400 events/crossing
~ 10000 particles in |η| ≤ 3.2
 mostly low pT tracks
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ATLAS                                            F. Hartjes

sLHCsLHC Inner Tracking (R<20cm) Inner Tracking (R<20cm)
 ATLAS Candidates:

– Planar
– 3D-silicon
– Diamond
– GOSSIP (Gas Pixel)

3D- Double
Type Columns

GOSSIP
EPS HEP 09 talks - S. Palestini, C. Civinini, G. Pellegrini
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Silicon forSilicon for  Linear ColliderLinear Collider
vertex sensorsvertex sensors

 Excellent spacepoint precision ( < 4 microns )
 Superb impact parameter resolution ( 5µm ⊕ 10µm/(p sin3/2θ) )
 Transparency ( ~0.1% X0 per layer )
 Track reconstruction ( find tracks in VXD alone )
 Sensitive to minimal bunch crossings ( <150 = 45  µsec for ILC)
 EMI immunity
 Power Constraint (< 100 Watts)

Concepts under Development
 Charge-Coupled Devices (CCDs)

– Build on 307Mpx of SLD ⇒ Column Parallel CCDs,
FPCCD (slow!)

  Monolithic Active Pixels – CMOS
– MAPs, FAPs, Chronopixels, 3D-SOI

 DEpleted P-channel Field Effect Transistor (DEPFET)
 Silicon on Insulator (SoI)
 Image Sensor with In-Situ Storage (ISIS)
 HAPS (Hybrid Pixel Sensors)

3D concept - YaremaEPS HEP 09 talk - R. De Masi 
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Silicon forSilicon for  Linear ColliderLinear Collider
trackertracker

 Superb resolution allows small tracking volume
– <1% σp/p at 100 GeV

 Fast - robust to backgrounds
 Requires very low mass support (passive cooling)

ALSO - SiLC - Silicon envelope for TPC

Modular low mass sensors tile CF cylinders - 0.6%X0/layer

10% X0

SiD
Vxd+trk
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NA62 NA62 GigatrackerGigatracker
 Three silicon pixel sensors

– Precise direction & timing
–  ~ GHz rate
– 1.5 MHz/mm2 maximum
– In vacuum

 Two readout options
– Constant Fraction Discriminator (CFD)

with complex pixel circuitry
– Time Over Threshold (TOT) with

simple, low power pixel circuitry
 Prototypes of analog for options in

CMOS 0.13 µm passed tests
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DiamondDiamond
 Advantages over silicon

– Larger bandgap
– Smaller dielectric constant

 Single Crystal (> 12 cm, 2 cm thick)
polycrystalline (few cm2)

 Experience as radiation monitors
 Candidate for LHC inner tracking

16 chip ATLAS Module of single crystal

Polycrystalline
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Gas DetectorsGas Detectors
 ALICE TPC

– Largest - 2466 mm Rout,
2 x 2500 mm drift

 Micro Pattern Gas Detectors (MPGDs)
– GEMs
– MicroMegas
– Timepix(CMOS)/Ingrid

 T2K Near Detector
– Largest TPC equipped with MPGDs

510 cm

E E
400 V / cm

92us

EPS HEP 09 talk - A. Matyja
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Linear Collider TPC Linear Collider TPC w/MGPDsw/MGPDs

Gas Electron Multiplier GEM

EPS HEP 09 talk - K. Dehmelt 
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Linear Collider TPCLinear Collider TPC
 DESY Beam Test

MicroMeGas
5 GeV electrons,
1 Tesla

Double GEMs
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Linear Collider TPCLinear Collider TPC
 Triple GEM structure with Timepix readout

Short
Drift

Long
Drift

J. Kaminiski, Univ. of Bonn
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T2K TPCT2K TPC

A. DelbartEPS HEP 09 talk - Claudio Giganti 
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CalorimetryCalorimetry
 Electromagnetic Calorimetry

– Silicon-Tungsten
– Scintillator strips
– Crystals
– Liquid Xe (MEG)

 Hadron Calorimetry
– Particle Flow
– Dual Readout
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Electromagnetic Electromagnetic CalorimetryCalorimetry
Silicon-Tungsten for Linear ColliderSilicon-Tungsten for Linear Collider

 High granularity needed for Particle Flow Analysis

Test 2006 - DESY/CERN     building
Beam 2007 - CERN  Technolog.
Program 2008 - FNAL    Prototype

1024

13mm2 pixels
handled by KPiX

Working toward

stack with 13mm2

Pixels

& MAPS version

EPS HEP 09 talk - 
C. Carloganu
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Electromagnetic Electromagnetic CalorimetryCalorimetry
Scintillator Scintillator Strips Strips w/ w/ MPPCMPPC** for Linear Collider for Linear Collider

 3-5 mm strips for high granularity needed for Particle Flow
 Tested at DESY & Fermilab

* Multi-Pixel Photon Counters
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Electromagnetic Electromagnetic CalorimetryCalorimetry
CrystalsCrystals

R. Zhu
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Electromagnetic Electromagnetic CalorimetryCalorimetry
CrystalsCrystals

 Rad Hard for SuperB, Mu2e, CMS
Endcap upgrade
– LYSO favored
– Large light, low noise

 Recent Application -
Homogenous HCAL -dual readout
– For large volume, cost‐effective

 UV  transparent  material crucial.
– Three candidates evaluated.
– Initial  investigation favors

 scintillating  PbF2.
R. Zhu

(Lu2(1—x)Y2xSiO5: Ce  --
Cerium doped Lutetium
Yttrium Orthosilicate)
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Electromagnetic Electromagnetic CalorimetryCalorimetry
LiquidLiquid  Xenon - MEGXenon - MEG

 800 liters of LXe
– 846 PMTs

 Nearing start of new run
     with improved performance giovanni.gallucci@pi.infn.it, CALOR 2008

World’s Highest Intensity
Muon Beam at PSI
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Hadronic CalorimetryHadronic Calorimetry
Particle Flow for Linear ColliderParticle Flow for Linear Collider

 Particle Flow demands high granularity
 Intense test beam program

Scintillator w/SiPM

One of 38 layers 
of the prototypeSmall RPC calorimeter in the

       Fermilab test beam
Fully containing Hcal under construction 

DESY, CERN,
& Fermilab tests

GEMs 

MicroMeGas 

DIGITAL ANALOG

EPS HEP 09 talk - J. Cvach
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CALICE CALICE Scintillator Scintillator TestsTests
Particle Flow for Linear ColliderParticle Flow for Linear Collider

 CERN 2006-07, FNAL 2008-09

 CALICE’s conclusions:
• The SiPM technology has proven to be robust and stable
• The calibration is well under control
• The performance is as expected and understood
• Strong support for predicted PFLOW performance

38 steel layers (2cm), 4.5λ
7608 tiles with SiPMs 

W/ ECAL and TCMT
common readout electronics
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CALICE Digital HCAL TestsCALICE Digital HCAL Tests
Particle Flow for Linear ColliderParticle Flow for Linear Collider

 Small glass RPC module tested in Fermilab beam

 1m3 prototype under construction

20 x 20 cm2 RPCs (based on two different designs)
        1 x 1 cm2 readout pads
Up to 10 chambers → 2560 readout channels
Complete readout chain as for larger system
Detailed tests with cosmic rays & in Fermilab beam
                  (µ, 120 GeV p, 1 – 16 GeV π+, e+ )

Cosmic ray tests for each chamber
Fermilab test beam with µ, π±, e±

       hadronic shower MC model comparison
       analog HCAL (CALICE) comparison
Construction completed in CY 2009
Data analysis in 2010/2011
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Hadronic CalorimetryHadronic Calorimetry
Dual ReadoutDual Readout

 Fluctuations in hadronic shower
– Nuclear binding energy losses & π0 energy variations

 Measure separately the EM shower component
– DREAM Collaboration measured in HE calorimeter
– Correct for EM fraction event by event (Q/S method)

 What resolution with combined signals?
– DREAM leakage limited
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sLHC CalorimetrysLHC Calorimetry
Confronting the Radiation ChallengeConfronting the Radiation Challenge

 ATLAS Forward Calorimeter
– LAr boiling, inter-electrode ion build-up, HV resistor voltage drop
– Two possible solutions

• Warm calorimeter in front of current FCAL
• New FCAL - smaller gaps and increased cooling

FCAL module (FCalchik) on the
Protvino testbeam

FCalchik with
cooling loops
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Particle IDParticle ID
 Crucial role in many experiments

– BaBar, Belle, LHC-b
 Future Needs

– Belle II, INFN SuperB, NA62
 Key Technologies

– Radiators
• Quartz (fused Silica) - polishing
• Silica aerogel - improved transmission,

mulit-index tiling

– Photodetectors
• Hybrid PD
• MCP-PMT
• MPPC

n1=1.046
n2=1.041
n3=1.037

Novosibirsk Aerogel

144ch HAPD
EPS HEP 09 talk - Z. Dolezal
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MPPCsMPPCs, , SiPMsSiPMs
 Single photon sensitive devices built from an avalanche

photodiode (APD) array on common Silicon substrate.
 Many attractive properties

– Extremely compact
– B-field immune
– Good timing
– Gain and QE competitive with PMT

 Many investigations

Multi-pixel Photon Counters
For T2K (Hamamatsu)

 667 pixels (50 µm)
>60,000; many tested
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Megaton Detectors forMegaton Detectors for
NeutrinosNeutrinos

 SuperK proves performance
of water Cherenkov

 Future goal - 1 MTon
 Challenges

– Costs
– PMTs (increased QE)
– Readout Electronics
– New photosensors
– Harden against accident

 T2K develops MPPC (SiPM)
SuperK
50 kTon
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Liquid Argon for NeutrinosLiquid Argon for Neutrinos
 ICARUS demonstrated potential
 Promising technique for future

experiments
– Low threshold

 Goal - scale up to ~100kTon
 Challenges

– Purification
– Cold, low noise electronics, signal mplex
– Vessel - design, design, materials,

insulation
– Siting
– Costs
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NeutrinolessNeutrinoless
Double Beta DecayDouble Beta Decay

 Several 100-200 kg detectors
being developed
– Challenge to minimize

backgrounds
– CUORE

• 203 kg 130Te
• 988 TeO2 bolometers
• Follows 11 kg 130Te CUORICINO

– EXO-200
• 200 Kg 136Xe
• Measure ionization and scintillation

plus Ba tag

– Majorana
• Goal: 120 kg of 76Ge

EXO-200
LXe Field Cage
& Readout Planes

R&D -Ionization & Scintillation:
  σ(E)/E = 3.0% @ 570 keV
      or 1.4% @ Qββ

       Will add Ba tagging
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 x

H. SobelM. Schumann

XENON

Dark MatterDark Matter
Direct Detection TechniquesDirect Detection Techniques
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Bolometers Bolometers for DM Detectionfor DM Detection
 CDMS

– Phonon/Charge detection with ZIP detectors
• Electric field pulls charge to sensitive amplifier
• Phonons break Cooper pairs in thin

superconducting Al layer, heating transition-edge
sensor & causing change in resistance.

• Readout elements highly segmented, and relative
timing of ionization and phonon signals provide
good event localization.

– Operated 5 kg in Soudan
– Planning 25 kg in SNOLAB (SuperCDMS)
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BolometersBolometers, cont., cont.
 EDELWEISS

– Ge/NTD
– Ge/NbSi
– Ge/Interdigit

• 30 kg operating

 CRESST-II
– ~ 300 g CaWO4 crystal

• Gran Sasso

 ROSEBUD
– BGO
– LiF (n-mon)
– Sapphire
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Warm LiquidWarm Liquid
Dark Matter DetectorDark Matter Detector

 COUPP
– Room Temp Bubble Chamber, CF3I, 2 kg tested

– New 20 and 60 kg chambers will go underground in 2010

A CCD camera takes pictures at 50 Hz.  Chamber triggers on
appearance of bubble in the frame.

Single bubble DM signature.
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DirectionalDirectional
Dark Matter DetectorsDark Matter Detectors

 Low pressure TPCs favored
– CS2 - spin-dependent interactions
– CF4 and 3He - spin-independent interactions

 Wire chamber readout
– DRIFT-II
– Two 1m3 (CS2) modules underground

 MPGDs
– NEWAGE, MIMAC

 PMT and CCD readout
– DMTPC (CF4)

DRIFT m3

DMTPC
NEWAGE
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Noble LiquidNoble Liquid
Dark Matter DetectorsDark Matter Detectors

 Many Attractive Features
– Low cost, easy to obtain, dense target material.
– Easily purified due to  freeze out of contaminants at cryogenic

temperatures.
– Very small electron attachment probability.
– Large electron mobility (Large drift velocity for small E-field).
– High scintillation efficiency.
– Possibility for large, homogenous detectors.

 Problem -  39Ar, 85Kr.

– See Elena Aprile’s talk for R&D on noble liquids

ArDM
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Test BeamsTest Beams
 Needed for detector development

as well as in many other phases of HEP experiment
eg. prototype testing, calibrations, etc.

 Laboratory support of test beams very important
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ConclusionConclusion
 Discoveries in HEP vitally depend on advances in detector

technology
 Challenges are huge

– speed, granularity, radiation, exotic materials, etc.
 Many efforts confronting these challenges
 Critical that the efforts are well funded
 Technology will continue to advance, with important emerging

capabilities critical to future discoveries
      - with timescales dependent on the level of financial support

     Don’t forget the test beams
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