

Advances in Detector Technology

J. Brau University of Oregon, Eugene

2009 EPS HEP Conference July 21, 2009

Introduction

***** Discoveries are limited by detector advances

- Must keep pace with moving scientific frontiers, and accelerators
- Detectors can rejuvenate accelerator programs

* Large challenges posed by future scientific opportunities

- sLHC
- ILC
- Super B
- Neutrinos
- Dark Matter
- Astro

many common challenges

* Many promising technologies advancing

Impossible to do justice - apologies for biases and omissions

Challenges

- * Precision energy, momentum, time, space
- ★ Speed/Occupancy
- ★ Radiation Hardness/Background Rejection
- ★ Power/Cooling
- * Cost

* Progress presented in several recent major conferences

- IEEE Nuclear Science Symposium, Dresden, October, 2008
- TIPP09, Tsukuba, March, 2009
- 11th Pisa Meeting, May, 2009

Enabling Advances

***** Segmentation 10-300 µm Si pixels, Si Cal, MPGDs ***** Speed & Power Faster electronics, lower noise ***** Integration Microelectronics, mechanics ***** Materials Sensor, rad hard, robust, thin ***** Radiation immunity Understanding, design, annealing

July 21, 2009

J. Brau EPS-HEP

Krakow

307 Mpixel SLD vxd3

The Enterprise

- ***** Applications
 - Colliders
 - Vertex
 - Tracker
 - Calorimeter
 - PID, incl. muon
 - Dark Matter Detectors
 - Neutrinos
 - Ground-based
 Particle Astro
 - Space

- ***** Core Technologies
 - Silicon
 - Gas
 - Crystals
 - Liquids
 - Readout, Electronics
 - Services, Power, Cooling, Support, Materials
 - Metrology
 - Trigger, DAQ

Parallel Advances

ATLAS and CMS

- Successful Construction & Commissioning established critical lessons for future
- ★ Upgrades for increased LHC luminosity
 - 10³⁵ for sLHC at end of decade (shutdown ~2017)
- ✤ Inner trackers
 - Complete replacement (even for lower luminosity due to accumulated radiation)
 - Radiation damage limits
 - Increased rate (eg. ATLAS TRT)
 - Improved granularity for pattern recognition

★ Other systems will need some upgrades, esp. electronics

Linear Collider Detectors

***** Goals - exceptional precision and time stamping

- Bunch train is ~3000 bunches over 1 msec (ILC)
- ★ Vertex detectors
 - < 4 μ m precision w/ ~20 μ m pixels
- ***** Trackers
 - $\sigma(1/p) \sim few \times 10^{-5}$
- ★ Calorimeter
 - 3-4% $\sigma(E_{jet})/E_{jet}$ for E_{jet} > 100 GeV

J. Brau

July 21, 2009

7

Heavy Flavor Experiments

* LHC-b

- Radiation rad-hard vertex locator
- ★ Super B
 - Reduce scattering in tracker thinner
 - Endcap crystals radiation
 - Endcap PID

***** NA62 (K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$)

- giga-tracker
- RICH
- ***** MEG ($\mu \rightarrow e \gamma$)
 - Liquid Xe Calorimeter
 - purity, cal response, calibration

Neutrinos

Current and recent advances

 MPPC (SiPMs) at T2K
 NOvA (seg. Liquid Scintillator)

 Future (toward the ~MegaTon detector)

 Large liquid argon - tracking
 New PMTs (low cost) - H₂0 Ch

Krakow

Direct Dark Matter Detection

- ★ large mass
- ★ low energy threshold (a few keV)
- ***** background suppression
 - deep underground
 - passive shield
 - low intrinsic radioactivity
 - gamma background discrimination
- ★ Signatures
 - Ionization
 - Scintillation
 - Phonons

Silicon

* Construction/commission experience of LHC and Fermi

- ***** Future challenges
 - Increased rate and radiation at sLHC
 - Increase precision for ILC and B factories
 - Specialize applications, such as NA62 Gigatracker

EPS-HEP

Krakow

sLHC Tracking

★ Intense Radiation Levels

- 10¹⁶ /cm² @ 5 cm (~400 MRad)
- 10¹⁵ /cm² @ 20 cm (~40 MRad)
- 2×10^{14} /cm² @ 50 cm (~10 MR)

(dictates technology for tracker)

***** R > 20 cm

- Silicon Strips (> 60 cm)
- Pixels (20 60 cm)

***** R< 20 cm

New technologies

■ 300-400 events/crossing ■~ 10000 particles in $|\eta| \le 3.2$ ■ mostly low p_T tracks

sLHC Inner Tracking (R<20cm)

***** ATLAS Candidates:

- Planar
- 3D-silicon
- Diamond
- GOSSIP (Gas Pixel)

Planar silicon	3D silicon	Diamond	Gossip ~20 mediocre	
< 10	< 10 ?	~ 14 (polycryst)		
reasonable	reasonable	reasonable		
<6	20 - 35	2	20 - 80	
pretty high	pretty high	medium	low	
20-50%?	~ 50%	~ 50%	> 100% poss	
well known	difficult	difficult	much R&D	
easy	easy	easy	critical critical	
reasonable	reasonable	relaxed		
critical	less critical	relaxed	relaxed	
NO	NO	NO	HV + gas probably	
NO	NO	NO		
100%	>95%?	98-100%	98%	
75 - 300 €/cm2	150 - 300 €/cm2	~1000 €/cm2?	20-30 €/cm	
>10	10	6	2	
yes	yes	Yes	near submit	
	Planar silicon < 10 reasonable < 6 pretty high 20 - 50%? well known easy reasonable critical NO NO 100% 75 - 300 €/cm2 >10 yes	Planar silicon3D silicon<10	Planar silicon3D siliconDiamond<10	

GOSSIP

EPS HEP 09 talks - S. Palestini, C. Civinini, G. PellegriniKrakow13

July 21, 2009

J. Brau EPS-HEP

Silicon for Linear Collider

vertex sensors

- *** Excellent spacepoint precision (** < 4 microns)
- * Superb impact parameter resolution ($5\mu m \oplus 10\mu m/(p \sin^{3/2}\theta)$)
- ***** Transparency (~0.1% X₀ per layer)
- ***** Track reconstruction (find tracks in VXD alone)
- ***** Sensitive to minimal bunch crossings (<150 = 45 μ sec for ILC)
- ***** EMI immunity
- *** Power Constraint** (< 100 Watts)

Concepts under Development

- * Charge-Coupled Devices (CCDs)
 - Build on 307Mpx of SLD ⇒ Column Parallel CCDs, FPCCD (slow!)
- * Monolithic Active Pixels CMOS
 - MAPs, FAPs, Chronopixels, 3D-SOI
- ***** DEpleted P-channel Field Effect Transistor (DEPFET)
- * Silicon on Insulator (Sol)
- * Image Sensor with In-Situ Storage (ISIS)
- * HAPS (Hybrid Pixel Sensors)

EPS HEP 09 talk - R. De Masi

July 21, 2009

J. Brau E

EPS-HEP Krakow

3D concept - Yarema 14

Silicon for Linear Collider tracker

EPS-HEP

- * Superb resolution allows small tracking volume
 - <1% $\sigma_{\rm p}/p$ at 100 GeV
- ★ Fast robust to backgrounds
- * Requires very low mass support (passive cooling)

J. Brau

July 21, 2009

Modular low mass sensors tile CF cylinders - 0.6%X₀/layer sid02 Tracker Material Scan

NA62 Gigatracker

- ***** Three silicon pixel sensors
 - Precise direction & timing
 - ~ GHz rate
 - 1.5 MHz/mm² maximum
 - In vacuum
- ***** Two readout options
 - Constant Fraction Discriminator (CFD) with complex pixel circuitry
 - Time Over Threshold (TOT) with simple, low power pixel circuitry
- Prototypes of analog for options in CMOS 0.13 μm passed tests

Diamond

* Advantages over silicon

- Larger bandgap
- Smaller dielectric constant
- Single Crystal (> 12 cm, 2 cm thick) polycrystalline (few cm²)
- ***** Experience as radiation monitors
- ***** Candidate for LHC inner tracking

16 chip ATLAS Module of single crystal

Polycrystalline

July 21, 2009

J. Brau EPS-HEP

Krakow

Gas Detectors

★ ALICE TPC

- Largest 2466 mm Rout,
 - 2 x 2500 mm drift

Micro Pattern Gas Detectors (MPGDs)

- GEMs
- MicroMegas
- Timepix(CMOS)/Ingrid
- ★ T2K Near Detector
 - Largest TPC equipped with MPGDs

EPS HEP 09 talk - A. Matyja

Linear Collider TPC w/MGPDs

EPS-HEP

Krakow

MicroPatternGasDetector MPGD not limited by **E** x **B** effects

EPS HEP 09 talk - K. Dehmelt July 21, 2009 J. Brau

Gas Electron Multiplier GEM

19

Linear Collider TPC

✤ DESY Beam Test

Linear Collider TPC

***** Triple GEM structure with Timepix readout

J. Kaminiski, Univ. of Bonn

July 21, 2009

Calorimetry

***** Electromagnetic Calorimetry

- Silicon-Tungsten
- Scintillator strips
- Crystals
- Liquid Xe (MEG)
- ***** Hadron Calorimetry
 - Particle Flow
 - Dual Readout

Electromagnetic Calorimetry Silicon-Tungsten for Linear Collider

★ High granularity needed for Particle Flow Analysis

Electromagnetic Calorimetry Scintillator Strips w/ MPPC* for Linear Collider

* 3-5 mm strips for high granularity needed for Particle Flow
* Tested at DESY & Fermilab

* Multi-Pixel Photon Counters

July 21, 2009

J. Brau EPS-HEP

Krakow

Electromagnetic Calorimetry

Crystals

Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(TI)	BGO	CsI(TI)	CsI(TI)	Csl	CsI(TI)	CsI(TI)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	40	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS ^a +Si PD	PMT	Si PD	Si PD	APD ^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	105	104	104	104	10 ⁴	10 ⁴	10 ⁵

Future crystal calorimeters in HEP: PWO for PANDA at GSI LYSO for a Super B Factory, Mu2e and CMS Endcap Upgrade

PbF₂, BGO, PWO for HHCAL

R. Zhu

11/18/2009

ILC Workshop 2008, Ren-yuan Zhu, Caltech

Electromagnetic Calorimetry Crystals

✤ Rad Hard for SuperB, Mu2e, CMS Endcap upgrade

- LYSO favored
- Large light, low noise

***** Recent Application -

Homogenous <u>HCAL</u> -dual readout

- For large volume, cost-effective
 UV transparent material crucial.
- Three candidates evaluated.
- Initial investigation favors scintillating PbF₂.

 $(Lu_{2(1-x)}Y_{2x}SiO_5: Ce - Cerium doped Lutetium Yttrium Orthosilicate)$

Electromagnetic Calorimetry Liquid Xenon - MEG

July 21, 2009

Hadronic Calorimetry Particle Flow for Linear Collider

Particle Flow demands high granularityIntense test beam program

CALICE Scintillator Tests

Particle Flow for Linear Collider

***** CERN 2006-07, FNAL 2008-09

***** CALICE's conclusions:

- The SiPM technology has proven to be robust and stable
- The calibration is well under control
- The performance is as expected and understood
- Strong support for predicted PFLOW performance

July 21, 2009

CALICE Digital HCAL Tests Particle Flow for Linear Collider

✤ Small glass RPC module tested in Fermilab beam

 $\begin{array}{l} 20 \ x \ 20 \ cm^2 \ \text{RPCs} \ (\text{based on two different designs}) \\ 1 \ x \ 1 \ cm^2 \ readout \ pads \\ \text{Up to 10 chambers} \rightarrow 2560 \ readout \ channels \\ \hline \textbf{Complete readout chain as for larger system} \\ \text{Detailed tests with cosmic rays \& in Fermilab beam} \\ (\mu, \ 120 \ \text{GeV p}, \ 1-16 \ \text{GeV} \ \pi^+, \ e^+ \) \end{array}$

★ 1m³ prototype under construction

Cosmic ray tests for each chamber Fermilab test beam with μ , π^{\pm} , e^{\pm} hadronic shower MC model comparison analog HCAL (CALICE) comparison Construction completed in CY 2009 Data analysis in 2010/2011

Hadronic Calorimetry Dual Readout

***** Fluctuations in hadronic shower

- Nuclear binding energy losses & π^0 energy variations
- * Measure separately the EM shower component
 - DREAM Collaboration measured in HE calorimeter
 - Correct for EM fraction event by event (Q/S method)
- ★ What resolution with combined signals?
 - DREAM leakage limited

July 21, 2009

sLHC Calorimetry

Confronting the Radiation Challenge

★ ATLAS Forward Calorimeter

- LAr boiling, inter-electrode ion build-up, HV resistor voltage drop
- Two possible solutions
 - Warm calorimeter in front of current FCAL
 - New FCAL smaller gaps and increased cooling

July 21, 2009

Particle ID

- * Crucial role in many experiments
 - BaBar, Belle, LHC-b
- ✤ Future Needs
 - Belle II, INFN SuperB, NA62
- * Key Technologies
 - Radiators
 - Quartz (fused Silica) polishing
 - Silica aerogel improved transmission, mulit-index tiling
 - Photodetectors
 - Hybrid PD
 - MCP-PMT
 - MPPC

EPS HEP 09 talk - Z. Dolezal

July 21, 2009

J. Brau

MPPCs, SiPMs

- Single photon sensitive devices built from an avalanche photodiode (APD) array on common Silicon substrate.
- ★ Many attractive properties
 - Extremely compact
 - B-field immune
 - Good timing
 - Gain and QE competitive with PMT
- ✤ Many investigations

EPS-HEP

Megaton Detectors for Neutrinos

- SuperK proves performance of water Cherenkov
- ★ Future goal 1 MTon
- * Challenges
 - Costs
 - PMTs (increased QE)
 - Readout Electronics
 - New photosensors
 - Harden against accident
- ★ T2K develops MPPC (SiPM)

Liquid Argon for Neutrinos

- ***** ICARUS demonstrated potential
- Promising technique for future experiments
 - Low threshold
- ★ Goal scale up to ~100kTon
- ★ Challenges
 - Purification
 - Cold, low noise electronics, signal mplex
 - Vessel design, design, materials, insulation
 - Siting
 - Costs

Krakow

Neutrinoless Double Beta Decay

- Several 100-200 kg detectors being developed
 - Challenge to minimize backgrounds
 - CUORE
 - 203 kg ¹³⁰Te
 - 988 TeO₂ bolometers
 - Follows 11 kg ¹³⁰Te CUORICINO
 - EXO-200
 - 200 Kg ¹³⁶Xe
 - Measure ionization and scintillation plus Ba tag
 R&D -Ionization & Scintillation:
 - Majorana
 - Goal: 120 kg of ⁷⁶Ge

J. Brau EPS-F

EPS-HEP Krakow

σ(E)/E = 3.0% @ 570 keV

Will add Ba tagging

or 1.4% @ Q_{BB}

Bolometers for DM Detection

* CDMS

Phonon/Charge detection with ZIP detectors

- Electric field pulls charge to sensitive amplifier
- Phonons break Cooper pairs in thin superconducting Al layer, heating transition-edge sensor & causing change in resistance.
- Readout elements highly segmented, and relative timing of ionization and phonon signals provide good event localization.

Operated 5 kg in Soudan

- Planning 25 kg in SNOLAB (SuperCDMS)

***** EDELWEISS

- Ge/NTD
- Ge/NbSi
- Ge/Interdigit
 - 30 kg operating

* CRESST-II

- ~ 300 g CaWO₄ crystal
 - Gran Sasso

* ROSEBUD

- BGO
- LiF (n-mon)
- Sapphire

Warm Liquid Dark Matter Detector

***** COUPP

Room Temp Bubble Chamber, CF₃I, 2 kg tested

A CCD camera takes pictures at 50 Hz. Chamber triggers on appearance of bubble in the frame.

Single bubble DM signature.

- New 20 and 60 kg chambers will go underground in 2010

Directional Dark Matter Detectors

★ Low pressure TPCs favored

- CS₂ spin-dependent interactions
- CF₄ and ³He spin-independent interactions
- ★ Wire chamber readout
 - DRIFT-II
 - Two 1m³ (CS₂) modules underground
- ★ MPGDs
- NEWAGE, MIMAC
 PMT and CCD readout
 DMTPC (CF₄)

Noble Liquid Dark Matter Detectors

★ Many Attractive Features

- Low cost, easy to obtain, dense target material.
- Easily purified due to freeze out of contaminants at cryogenic temperatures.
- Very small electron attachment probability.
- Large electron mobility (Large drift velocity for small E-field).
- High scintillation efficiency.
- Possibility for large, homogenous detectors.
- ★ Problem ³⁹Ar, ⁸⁵Kr.

- See Elena Aprile's talk for R&D on noble liquids

ArDM

Test Beams

Needed for detector development

 as well as in many other phases of HEP experiment
 eg. prototype testing, calibrations, etc.

* Laboratory support of test beams very important

July 21, 2009

Conclusion

Discoveries in HEP vitally depend on advances in detector technology

- ★ Challenges are huge
 - speed, granularity, radiation, exotic materials, etc.
- * Many efforts confronting these challenges
- ★ Critical that the efforts are well funded
- ★ Technology will continue to advance, with important emerging capabilities critical to future discoveries
 - with timescales dependent on the level of financial support

Don't forget the test beams

July 21, 2009

Acknowledgements

 E. Aprile, M. Breidenbach, A. Bevan, K. Dehmelt, M Demarteau B. Fleming, G. Gratta, D. Hitlin, J. Jaros, G. Rakness, J. Repond, F. Sefkow, A. Seiden, D. Strom, F. Taylor, J. Timmermans, D. Wark, A. White