Charm production in high-energy p+A & A+A collisions

- 1. Cold nuclear matter effects from SPS to RHIC
- 2. Charm in heavy ion collisions

Torsten Dahms –CERN

EPS Conference on High Energy Physics Kraków, July 16th, 2009

Motivation

- Charm as a probe of the QGP
 - J/ ψ suppression: golden signature of the QGP
 - Charmonia as thermometer
 - Open charm
 - Heavy quark energy loss in medium
 - Reference for charmonium suppression
- Cold nuclear matter effects important for interpretation of HI measurements
 - Nuclear PDFs, initial state parton energy loss, final state absorption (σ_{abs}), etc.

1. Cold nuclear matter effects from SPS to RHIC

Charm production at E866...

- Fixed target p-A collisions at 800 GeV
- Broad rapidity coverage

$$\sigma_{\rm pA} = \sigma_{\rm pp} A^{\alpha}$$

Mid-rapidity (y<0.5):

- J/ψ strongly absorbed
- · No nuclear effects on open charm
- → At mid-rapidity, final state effects dominate the changes to the per-nucleon cross sections (and kinematics)

Forward rapidity:

- Strong reduction of the J/ ψ and open charm per-nucleon production cross sections
- → Strong indication of initial state effects
 - Nuclear modification of PDFs?
 - Initial state gluon energy loss?

- NA3, NA50, E866, HERA-B (200, 400/450, 800, 920 GeV)
- Similar J/ψ trend as E866 in p-A:
 - Changes with J/ ψ rapidity & collision energy

- NA3, NA50, E866, HERA-B (200, 400/450, 800, 920 GeV)
- Similar J/ψ trend as E866 in p-A:
 - Changes with J/ ψ rapidity & collision energy
 - How do new NA60 data at fit into the game?
 - Prediction for 158 GeV shown as black dotted line

- NA3, NA50, E866, HERA-B (200, 400/450, 800, 920 GeV)
- Similar J/ψ trend as E866 in p-A:
 - Changes with J/ ψ rapidity & collision energy
 - How do new NA60 data at fit into the game?
 - Prediction for 158 GeV shown as black dotted line
 - NA60 data at 400 GeV agree well with previously established trend

- NA3, NA50, E866, HERA-B (200, 400/450, 800, 920 GeV)
- Similar J/ ψ trend as E866 in p-A:
 - Changes with J/ψ rapidity & collision energy
 - How do new NA60 data at fit into the game?
 - Prediction for 158 GeV shown as black dotted line
 - NA60 data at 400 GeV agree well with previously established trend
 - NA60 data at 158 GeV are generally higher than expected (besides the first point)
 - → Different physics at forward rapidity than just nuclear absorption?

- NA3, NA50, E866, HERA-B (200, 400/450, 800, 920 GeV)
- Similar J/ψ trend as E866 in p-A:
 - Changes with J/ ψ rapidity & collision energy
 - How do new NA60 data at fit into the game?
 - Prediction for 158 GeV shown as black dotted line
 - NA60 data at 400 GeV agree well with previously established trend
 - NA60 data at 158 GeV are generally higher than expected (besides the first point)
 - → Different physics at forward rapidity than just nuclear absorption?
 - But similar trend also observed for open charm, ergo initial state effects...?
- Non-trivial cocktail of initial and final state effects

open charm

E866 800, Cu/Be

0.6

0.8

NA60 400, Cu/Be

NA60 158, Cu/Be

0.2

...and at RHIC?

- Collider with $\sqrt{s} = 200 \text{ GeV}$ p+p, d+Au (+heavy ions)
- J/ψ in d+Au central vs. peripheral shows significant increase of "absorption" at forward rapidity
 - As seen by E866, NA3, ...
 - → energy loss as well?

...and at RHIC?

- Collider with $\sqrt{s} = 200 \text{ GeV}$ p+p, d+Au (+heavy ions)
- J/ψ in d+Au central vs. peripheral shows significant increase of "absorption" at forward rapidity
 - As seen by E866, NA3, ...
 - → energy loss as well?

...and at RHIC?

- Collider with $\sqrt{s} = 200 \text{ GeV}$ p+p, d+Au (+heavy ions)
- J/ψ in d+Au central vs. peripheral shows significant increase of "absorption" at forward rapidity
 - As seen by E866, NA3, ...→ energy loss as well?
 - If so, should also affect open charm
 - Existing data of non-photonic leptons from semi-leptonic open charm decays have large uncertainties, but indicate the same trend
 - Should be seen in new data (Run 8) analysis is ongoing

2. Charm in heavy ion collisions

NA60: open charm in In-In

- NA60 measured dimuon continuum in In-In collisions at the SPS at 158 GeV
- With vertexing able to distinguish non-prompt from prompt dimuons in the intermediate mass region (1.16–2.56 GeV)
- Non-prompt:
 - From simultaneous semi-leptonic decays of charmed mesons
 - Two times larger charm cross section than the world average (based on fully reconstructed D \rightarrow π K decays)
 - Open charm in p-p needed

RHIC: open charm in Au+Au

- PHENIX & STAR have measured non-photonic single electrons in p+p and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
- STAR measures $2 \times \text{larger open charm cross}$ section than PHENIX both in p+p and Au+Au (cancels in R_{AA})
- Both measure high p_T suppression of electrons from semi-leptonic open charm (& beauty?) decays
- Significant elliptic flow
- → Final state effect: strong coupling of heavy quarks to the medium

PHENIX, PRL 98 (2007) 172301 STAR, PRL 98 (2007) 192301

RHIC: open charm in Au+Au

- PHENIX & STAR have measured non-photonic single electrons in p+p and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
- STAR measures $2 \times larger$ open charm cross section than PHENIX both in p+p and Au+Au (cancels in R_{AA})
- Both measure high p_T suppression of electrons from semi-leptonic open charm (& beauty?) decays
- Significant elliptic flow
- → Final state effect: strong coupling of heavy quarks to the medium
- Where does beauty become important?
- b/(c+b) measured via e-h correlations in p+p

PHENIX, PRL 98 (2007) 172301 STAR, PRL 98 (2007) 192301

PHENIX: open charm in dielectrons

• PHENIX has measured dielectrons in p+p and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

• p+p:

- IMR shape in excellent agreement with PYTHIA
- Total charm and beauty cross section:

```
\sigma_{cc} = 544 ± 39 (stat) ± 142 (syst) ± 200 (model) µb \sigma_{bb} = 3.9 ± 2.5 (stat) ^{+3}_{-2} (syst) µb
```

 In very good agreement with PHENIX result from non-photonic single electrons:

$$\sigma_{cc} = 567 \pm 57 \text{ (stat)} \pm 193 \text{ (syst)} \mu b$$

• Au+Au:

- IMR in apparent agreement with PYTHIA scaled to total cross section of σ_{cc} = 567µb × N_{coll}
- But we know that open charm is heavily modified
- Toy model: randomized correlation of c and cbar is much softer
- Would leave room for thermal photons from qqbar
- We know they should be there, because PHENIX has measured thermal photons at very low mass from qg Compton scattering and NA60 (SPS) has seen them

PHENIX: open charm in dielectrons

• PHENIX has measured dielectrons in p+p and Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

• p+p:

- IMR shape in excellent agreement with PYTHIA
- Total charm and beauty cross section:

```
\sigma_{cc} = 544 ± 39 (stat) ± 142 (syst) ± 200 (model) µb \sigma_{bb} = 3.9 ± 2.5 (stat) ^{+3}_{-2} (syst) µb
```

 In very good agreement with PHENIX result from non-photonic single electrons:

$$\sigma_{cc} = 567 \pm 57 \text{ (stat)} \pm 193 \text{ (syst)} \mu b$$

• Au+Au:

- IMR in apparent agreement with PYTHIA scaled to total cross section of σ_{cc} = 567µb × N_{coll}
- But we know that open charm is heavily modified
- Toy model: randomized correlation of c and cbar is much softer
- Would leave room for thermal photons from qqbar
- We know they should be there, because PHENIX has measured thermal photons at very low mass from qg Compton scattering and NA60 (SPS) has seen them

PLB 670 (2009) 313

Summary

Cold Nuclear Matter Effects

- Charm production in p-A collisions at forward rapidity seems to probe initial state effects (similar behavior of closed and open charm)
- Mid-rapidity different for open and closed charm
- → shows non-trivial cocktail of initial and final state effects

Charm in heavy ion collisions

- Single electrons from semi-leptonic open charm decays suppressed at high p_T in Au+Au collisions at RHIC (+ significant elliptic flow)
 - → attributed to heavy quark energy loss in the hot and dense medium
- Dielectrons in IMR from correlated open charm decays in Au+Au collision consistent with no modification in shape with respect to p+p → a fortunate cancelation of modified open charm + thermal radiation from qqbar annihilation?

Outlook

RHIC II

- Will provide increased luminosities to study rare processes with higher statistics
- Detector upgrades in PHENIX and STAR will enable vertexing and improved beauty/charm separation
- Will hopefully resolve factor 2 difference in charm cross section measurements by PHENIX and STAR

The LHC

- Higher $\sqrt{s} \rightarrow$ even higher production rates of rare processes
- Will allow quantitative measurements of the Y family
- ALICE will measure hadronic decays of D mesons
- CMS will measure beauty through displaced J/ψ over large y range
- Open and closed charm and beauty measurements (J/ ψ , ψ ', χ_c , Υ (1S), Υ (2S), Υ (3S), and χ_b) will allow us to perform a more systematic study of heavy flavor production and suppression than ever before...

References

- Lourenço, Vogt, Wöhri, "Energy dependence of J/ ψ absorption in proton-nucleus collisions", JHEP 02 (2009) 014
- NA60, "Evidence for the production of thermal muon pairs with masses above 1 GeV/ c^2 in 158 A GeV indium-indium collisions", EPJ C 59 (2009) 607
- PHENIX, "Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV", PRL 98 (2007) 172301
- STAR, "Transverse Momentum and Centrality Dependence of High- p_T Nonphotonic Electron Suppression in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV", PRL 98 (2007) 192301
- PHENIX, "Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p Collisions at $\sqrt{s} = 200$ GeV" (2009), arXiv:0903.4851
- PHENIX, "Dilepton mass spectra in p+p collisions at \sqrt{s} = 200 GeV and the contribution from open charm", PLB 670 (2009) 313
- PHENIX, "Enhancement of the dielectron continuum in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions" (2007), arXiv:0706.3034
- PHENIX, "Enhanced production of direct photons in Au+Au collision sat $\sqrt{s_{NN}}$ = 200GeV" (2008), arXiv:0804.4168

Backup

PHENIX Open Charm (μ[±])

PHENIX Open Charm (e[±])

STAR Open Charm (e[±])

PHENIX Thermal Photons

PHENIX J/ψ

