W and Z Physics

Chris Hays Oxford University

European Physical Society

HEP 2009

The Electroweak Symmetry

- Fundamental Lagrangian has $SU(2)_L \times U(1)_Y$ symmetry
- Vacuum charged under SU(2), U(1)
 - Fixes relative directions
 - Residual $U(1)_{EM}$ symmetry
- 3 parameters define Electroweak interactions
 - Strength [g: SU(2), g': U(1)]
 - Mass scale of broken symmetry (vacuum energy v)
- Enormously predictive theory
 - Confirmed (W & Z discoveries) and highly tested
 - Missing piece: details of symmetry breaking

F. Wilczek, Nature 433, 239 (2005) 2

Electroweak Tests

• Many parameters measured to high precision

Tree-level relations:

$$\alpha_{EM} = g^2 g'^2 / 4\pi [g^2 + g'^2]$$
$$m_Z = [g^2 + g'^2]^{1/2} v / 2$$

LEP & SLD Collaborations, Physics Reports 427, 257 (2006)

$$sin^2 \theta = g'^2 / [g^2 + g'^2]$$

 $m_W = gv / 2$

Loop-Level Probes

- High precision provides sensitivity to unobserved particles
 - Probed through loop corrections
 - Sensitivity currently limited by precision on W boson mass

W Boson Mass Measurements

- Published measurements give combined precision of 25 MeV
 - Preliminary DØ result is world's most precise single measurement

• Future hadron-collider measurements promise <10 MeV precision

W & Z Production at Hadron Colliders

- Initial momentum in beam direction unknown
 - Focus on transverse quantities

Measuring m_W at a Hadron Collider

- Experimental inputs:
 - In situ calibration of detector response to l^{\pm} and ν
 - Only transverse momenta used in mass fit
- Theoretical inputs:

– Details of W production and decay

$$m_T^2 = 2p_T^l p_T^{\nu} (1 - \cos\Delta\phi)$$

Source	Uncertainty (MeV)
Lepton Scale	23.1
Lepton Resolution	4.4
Lepton Efficiency	1.7
Lepton Tower Removal	6.3
Recoil Energy Scale	8.3
Recoil Energy Resolution	9.6
Backgrounds	6.4
PDFs	12.6
W Boson p_T	3.9
Photon Radiation	11.6

CDF Collaboration, PRL 99, 151801 (2007), PRD 77, 112001 (2008) 7

21 July, 2009

C. Hays, Oxford University

WBoson Production

- Parton distribution functions
 - Affect observed m_T distribution
 - Intersection of theory and experiment
 - Wide set of data used to fit for function parameters at given Q²
 - Higher Q² obtained using DGLAP equations
 - New Tevatron data improving PDF accuracy

1±

WBoson Production

W Boson Production

- Parton distribution functions
 - *W boson charge asymmetry*

W Boson Production

Measuring m_W at a Hadron Collider

- Experimental inputs:
 - In situ calibration of detector response to l^{\pm} and ν
 - Only transverse momenta used in mass fit
- Theoretical inputs:

– *Details of W production and decay*

$$m_T^2 = 2p_T^l p_T^v (1 - \cos\Delta\phi)$$

Source	Uncertainty (MeV)
Lepton Scale	23.1
Lepton Resolution	4.4
Lepton Efficiency	1.7
Lepton Tower Removal	6.3
Recoil Energy Scale	8.3
Recoil Energy Resolution	9.6
Backgrounds	6.4
PDFs	12.6
$W \operatorname{Boson} p_T$	3.9
Photon Radiation	11.6

CDF Collaboration, PRL 99, 151801 (2007), PRD 77, 112001 (2008) 12

21 July, 2009

W Boson Decay

- m_W measurement sensitive to γ radiation from final-state l^{\pm}
 - Including O(a) radiation has ~150 MeV effect at CDF
 - Uncertainty primarily due to higher orders
 - New generators include higher orders using exponentiation techniques
 - Promise to significantly reduce QED uncertainties

Measuring m_W at a Hadron Collider

- Experimental inputs:
 - In situ calibration of detector response to l^{\pm} and v
 - Only transverse momenta used in mass fit
- Theoretical inputs: •

- *Details of W production and decay*

$$m_T^2 = 2p_T^l p_T^v (1 - \cos\Delta\phi)$$

Source	Uncertainty (MeV)
Lepton Scale	23.1
Lepton Resolution	4.4
Lepton Efficiency	1.7
Lepton Tower Removal	6.3
Recoil Energy Scale	8.3
Recoil Energy Resolution	9.6
Backgrounds	6.4
PDFs	12.6
W Boson p_T	3.9
Photon Radiation	11.6

CDF Collaboration, PRL 99, 151801 (2007), PRD 77, 112001 (2008) 14

21 July, 2009

Z Boson Production

- Boson transverse momentum
 - Dominant production in non-perturbative regime
 - Parameters motivated by theory, measured with Z boson data

- Experimentally more precise to measure projected boson p_T

Measuring m_W at a Hadron Collider

- Experimental inputs:
 - In situ calibration of detector response to l^{\pm} and ν
 - Only transverse momenta used in mass fit

$$m_T^2 = 2p_T^l p_T^v (1 - \cos\Delta\phi)$$

Source	Uncertainty (MeV)
Lepton Scale	23.1
Lepton Resolution	4.4
Lepton Efficiency	1.7
Lepton Tower Removal	6.3
Recoil Energy Scale	8.3
Recoil Energy Resolution	9.6
Backgrounds	6.4
PDFs	12.6
W Boson p_T	3.9
Photon Radiation	11.6

CDF Collaboration, PRL 99, 151801 (2007), PRD 77, 112001 (2008) 16

DØ m_W Measurement

- Experimental inputs:
 - In situ calibration of detector response to l^{\pm}
 - Use sample of **18,725** fully reconstructed $Z \rightarrow ee$ events
 - Response includes scale and offset: $R = \alpha E + \beta$
 - Energy scale calibration is dominant systematic uncertainty on m_W

DØ m_W Measurement

- Experimental inputs:
 - In situ calibration of detector response to v
 - Develop model using GEANT and randomly collected events (zero bias)
 - Tune parameters with $Z \rightarrow ee$ events
 - Response to hadrons (< 1) results in measured momentum imbalance

DØ m_W Measurement

- W boson mass fits
 - Template fits to m_T , $p_T^{l\pm}$, p_T^{ν} distributions
 - m_T most accurate, others provide important cross-check and additional precision

Source	m _T	p _T (e)	Missing E _T
Electron energy response	34	34	34
Electron energy resolution	2	2	3
Electron energy non-linearity	4	6	7
Electron energy loss differences for W and Z	4	4	4
Electron efficiencies	5	6	5
Recoil model	6	12	20
Backgrounds	2	5	4
Subtotal Experimental	35	37	41
PDF CTEQ6.1M	9	11	11
QED	7	7	9
Boson p _T	2	5	2
Subtotal Theory (W/Z production & decay)	12	14	17
Total Systematics	37	40	44
Total Statistics	<u>2</u> 3	27	23
TOTAL	44	48	50

 $m_W = 80.401 \pm 0.021_{\text{stat}} \pm 0.038_{\text{sys}} \text{ GeV}$ = 80.401 ± 0.043 GeV

World-Average *m*_W

- Tevatron average not yet available •
- Gfitter group has calculated its own world-average m_W
 - $m_W = 80.399 \pm 0.023 \text{ GeV} (\sim 10\% \text{ reduction in uncertainty})$

104⁺¹⁴⁸₋₆₄

26⁺²⁵₋₁₆

371⁺²⁹⁵₋₁₆₆

42⁺⁵⁶₋₂₂

83⁺³⁰₋₂₃

Constraints from m_W

• Electroweak measurements prefer light Higgs, heavy SUSY

- Some tension in both cases
 - Something else?
 - Need increased precision

Future *m_W* Measurements

- Expect $\delta m_W < 25$ MeV from next Tevatron measurement
 - $CDF: 2.3 fb^{-1}, D\emptyset: 5 fb^{-1}$

- CDF momentum scale calibration includes $J/\psi \rightarrow \mu\mu$, $Y \rightarrow \mu\mu$, electron E/p

- Expect δm_W~ 7 MeV from ATLAS
 p_T fit with 10 fb⁻¹
 45 million W boson events
 - 4.5 million 7 begen events
 - 4.5 million Z boson events

effect	δm _w (MeV)
Γ_{W}	0.5
Уw	1
p _{tW}	3
QED radiation	<1
linearity and scale	4
resolution	1
efficiency	3 (e); <1 (μ)
$W \to \tau \nu$	0.4
$Z \rightarrow I(I)$	0.2
$Z \to \tau\tau$	0.1
Jet events	0.5
	<1 (e); ~0 (µ)
	<0.1
	~7
	effect Γ_W y_W p_{W} QED radiationlinearity and scaleresolutionefficiency $W \rightarrow \tau v$ $Z \rightarrow t \tau$ $Z \rightarrow t \tau$ Jet events

21 July, 2009

One channel (e) and one study (\boldsymbol{p}_{T})

Measurement of $\sin^2\theta_W$

- Chiral weak coupling produces angular asymmetry in Drell-Yan •
 - $d\sigma/d\cos\theta \propto 1 + \cos^2\theta + A_{FB}\cos\theta \left[A_{FB} = f(v_{f}, a_{f}, s)\right]$
 - Vector & axial couplings:
 - $\mathbf{v_f} = I_1^3$ 2e sin² θ_W ; $\mathbf{a_f} = I_1^3$
 - Measurement provides sensitivity to $\sin^2 \theta_W$

 $\sin^2\theta_{\rm W} = 0.2326 \pm$ $0.0018_{\text{stat}} \pm$ 0.0006_{svs}

c.f. SM prediction: $\sin^2 \theta_{\rm W} = 0.23149 \pm$ 0.00013

DØ Collaboration, PRL 101, 191801 (2008)

Quark Couplings to Neutral Current

- Ambiguity in LEP measurement of quark electroweak couplings
 - HERA and Tevatron data resolving ambiguity

 $-a_{q} = I_{L}^{3} = 1/2$ (u), -1/2 (d)

- Up and down quark couplings to neutral current
 - Vector coupling:

$$- \mathbf{v_q} = I_L^3 - 2e \sin^2 \theta_W = 0.203$$
 (u), -0.351 (d)

• Axial coupling:

Fit to v_q, a_q using NC data from HERA

Factor of two more data available for analysis

H1 Collaboration, PLB 632, 35 (2006)

21 July, 2009

- Non-abelian electroweak structure tested in detail
 - Tevatron results complementary to LEP
 - Sensitive to deviations at higher Q^2
 - Separately probe *WWZ* and *WWγ* vertices

- Continue to add final states to probe triple-gauge couplings

- Non-abelian electroweak structure tested in detail
 - Tevatron results complementary to LEP
 - Sensitive to deviations at higher Q^2
 - Separately probe *WWZ* and *WWγ* vertices

- *Continue to add final states to probe triple-gauge couplings*

- Non-abelian electroweak structure tested in detail
 - Tevatron results complementary to LEP
 - Sensitive to deviations at higher Q^2
 - Separately probe *WWZ* and *WWγ* vertices
 - Continue to add final states to probe triple-gauge couplings
 - $W\gamma \rightarrow l\nu\gamma$
 - $Z\gamma \rightarrow ll\gamma$
 - $Z\gamma \rightarrow \nu\nu\gamma$
 - $WW \rightarrow llvv$
 - $WW \rightarrow l\nu qq$
 - $WZ \rightarrow l\nu qq$
 - $WZ \rightarrow lllv$
 - $WZ \rightarrow qqvv$
 - $ZZ \rightarrow qq\nu\nu$
 - $ZZ \rightarrow llll$
 - $ZZ \rightarrow ll\nu\nu$
 - $ZZ \rightarrow llqq$

21 July, 2009

- Non-abelian electroweak structure tested in detail
 - Tevatron results complementary to LEP
 - Sensitive to deviations at higher Q^2
 - Separately probe *WWZ* and *WWγ* vertices

- *Continue to add final states to probe triple-gauge couplings*

21 July, 2009

C. Hays, Oxford University

5.3σ observation

- Non-abelian electroweak structure tested in detail
 - Tevatron results complementary to LEP
 - Sensitive to deviations at higher Q^2
 - Separately probe *WWZ* and *WWy* vertices
 - Continue to add final states to probe triple-gauge couplings
 - $W\gamma \rightarrow l\nu\gamma$
 - $Z\gamma \rightarrow ll\gamma$
 - $Z\gamma \rightarrow \nu\nu\gamma$
 - $WW \rightarrow llvv$
 - $WW \rightarrow l\nu qq$
 - $WZ \rightarrow l\nu qq$
 - $WZ \rightarrow lllv$
 - $WZ \rightarrow qqvv$
 - $ZZ \rightarrow qq\nu\nu$
 - $ZZ \rightarrow llll$
 - $ZZ \rightarrow llvv$
 - $ZZ \rightarrow llqq$

CDF Collaboration, PRL 100, 201801 (2008)

4.4σ evidence

C. Hays, Oxford University

More Results

- PDFs and m_W at LHC
 - Lepton charge asymmetry can constrain PDFs
 - $-W^+/W^-$ production asymmetry complicates m_W measurement
- Tau measurements at BaBar
 - Lepton universality $Z/\gamma^* \rightarrow \tau \tau / Z/\gamma^* \rightarrow \mu \mu = 1$ (ignoring masses)
 - $R_{\tau\mu}(Y(1s)) = 1.009 \pm 0.010_{stat} \pm 0.024_{sys}$
 - Tau mass
 - $m_{\tau} = 1776.68 \pm 0.12_{\text{stat}} \pm 0.41_{\text{sys}} \text{MeV}$
 - $(m_{\tau^+} m_{\tau^-})/m_{\tau} = (-3.5 \pm 1.3) \times 10^{-4}$

- $(g 2)_{\mu}$
 - New tau-based a_{μ}^{had} more consistent with electron-based a_{μ}^{had} (<3 σ)
 - g-2 data theory discrepancy $1.9\sigma(\tau) 3.5\sigma(e)$

C. Hays, Oxford University

Summary

- Steadily improving precision on m_W
 - CDF and DØ have the two best measurements in the world
 - Pieces coming together to allow single measurements with $\delta m_W < 25 \text{ MeV}$
 - Expect ultimate hadron-collider precision of $\delta m_W < 10 \text{ MeV}$
- Precision measurement of sin²θ_W possible with full Run 2 data set
 CDF and DØ have initial measurements using A_{FB} in electron data
- HERA producing best measurements of NC quark couplings
 Now also able to observe triple-gauge couplings
- Tevatron experiments probing TGC with unprecedented precision – New hadronic channels an important step on the road to the Higgs

If there is no SM Higgs...

C. Hays, Oxford University