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The Electroweak Symmetry

• Fundamental Lagrangian has SU(2)L × U(1)Y symmetry

• Vacuum charged under SU(2), U(1)
– Fixes relative directions
– Residual U(1)EM symmetry

• 3 parameters define Electroweak interactions
– Strength [g: SU(2), g’: U(1)]
– Mass scale of broken symmetry (vacuum energy v)

• Enormously predictive theory
– Confirmed (W & Z discoveries) and highly tested
– Missing piece: details of symmetry breaking

F. Wilczek, Nature 433, 239
(2005)
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Electroweak Tests

• Many parameters measured to high precision

mZ = [g2 + g’2]1/2 v / 2

Tree-level relations:

mW = gv / 2
sin2θ = g’2 / [g2 + g’2]

αEM = g2g’2 / 4π[g2 + g’2]

LEP & SLD Collaborations,
Physics Reports 427, 257 (2006)
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Loop-Level Probes

• High precision provides sensitivity to unobserved particles
– Probed through loop corrections
– Sensitivity currently limited by precision on W boson mass

Discovered
Awaiting discovery

 mW
2 =

παEM

√2GF (1 - mW
2/mZ

2)(1 - Δr)

Tree level: mW = 79.964 ± 0.005 GeV
Measurement: mW = 80.399 ± 0.023 GeV
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W Boson Mass Measurements
• Published measurements give combined precision of 25 MeV

– Preliminary DØ result is world’s most precise single measurement

• Future hadron-collider measurements promise <10 MeV precision
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W & Z Production at Hadron Colliders

• Initial momentum in beam direction unknown
– Focus on transverse quantities
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Measuring mW at a Hadron Collider

• Experimental inputs:
– In situ calibration of detector response to l± and ν

• Only transverse momenta used in mass fit

• Theoretical inputs:
– Details of W production and decay

ν

l±

mT
2

 = 2pl
T pνT (1 - cosΔφ)

CDF Collaboration,
PRL 99, 151801 (2007),
PRD 77, 112001 (2008)
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W Boson Production

• Parton distribution functions
– Affect observed mT distribution
– Intersection of theory and experiment

• Wide set of data used to fit for function parameters at given Q2

• Higher Q2 obtained using DGLAP equations
– New Tevatron data improving PDF accuracy

l±

ν

l±

ν
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W Boson Production

• Parton distribution functions
– W boson charge asymmetry
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W Boson Production

• Parton distribution functions
– W boson charge asymmetry
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W Boson Production

• Parton distribution functions
– W boson charge asymmetry

CDF Collaboration,
PRL 102, 181801 (2009)

DØ Collaboration,
PRL 101, 211801 (2008)
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Measuring mW at a Hadron Collider

• Experimental inputs:
– In situ calibration of detector response to l± and ν

• Only transverse momenta used in mass fit

• Theoretical inputs:
– Details of W production and decay

ν

l±

mT
2

 = 2pl
T pνT (1 - cosΔφ)

CDF Collaboration,
PRL 99, 151801 (2007),
PRD 77, 112001 (2008)
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W Boson Decay

• mW measurement sensitive to γ radiation from final-state l±

– Including O(a) radiation has ~150 MeV effect at CDF
– Uncertainty primarily due to higher orders
– New generators include higher orders using exponentiation techniques

• Promise to significantly reduce QED uncertainties

HORACE
C.M. Carloni Calame et al.

PRD 69, 037301 (2004)

WINHAC
W. Placzek and S. Jadach

EPJ C 29, 325 (2003)
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Measuring mW at a Hadron Collider

• Experimental inputs:
– In situ calibration of detector response to l± and ν

• Only transverse momenta used in mass fit

• Theoretical inputs:
– Details of W production and decay

ν

l±

mT
2

 = 2pl
T pνT (1 - cosΔφ)

CDF Collaboration,
PRL 99, 151801 (2007),
PRD 77, 112001 (2008)
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Z Boson Production

• Boson transverse momentum
– Dominant production in

non-perturbative regime
– Parameters motivated by theory,

measured with Z boson data
– Experimentally more precise to measure projected boson pT
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Measuring mW at a Hadron Collider

• Experimental inputs:
– In situ calibration of detector response to l± and ν

• Only transverse momenta used in mass fit

• Theoretical inputs:
– Details of W production and decay

ν

l±

mT
2

 = 2pl
T pνT (1 - cosΔφ)

CDF Collaboration,
PRL 99, 151801 (2007),
PRD 77, 112001 (2008)
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• Experimental inputs:
– In situ calibration of detector response to l±

• Use sample of 18,725 fully reconstructed Z → ee events
• Response includes scale and offset: R = αE + β
• Energy scale calibration is dominant systematic uncertainty on mW

– Scales with statistics

DØ mW Measurement
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DØ mW Measurement

• Experimental inputs:
– In situ calibration of detector response to ν

• Develop model using GEANT and randomly collected events (zero bias)
• Tune parameters with Z → ee events
• Response to hadrons (< 1) results in measured momentum imbalance

– Well modeled by fast simulation
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DØ mW Measurement

• W boson mass fits
– Template fits to mT, pT

l±, pT
ν distributions

• mT most accurate, others provide important cross-check and additional precision

 mW = 80.401 ± 0.021stat ± 0.038sys GeV
       = 80.401 ± 0.043 GeV
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World-Average mW

• Tevatron average not yet available
• Gfitter group has calculated its own world-average mW

– mW = 80.399 ± 0.023 GeV (~10% reduction in uncertainty)

Gfitter Group,
EPJC 60, 543 (2009)

1.4% probability to find such a deviant outlier
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Constraints from mW

• Electroweak measurements prefer light Higgs, heavy SUSY
– Some tension in both cases

• Something else?
• Need increased precision

2008 mW
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Future mW Measurements

• Expect δmW < 25 MeV from next Tevatron measurement
– CDF: 2.3 fb-1, DØ: 5 fb-1

– CDF momentum scale calibration includes J/ψ→µµ, Υ→µµ, electron E/p

• Expect δmW ~ 7 MeV from ATLAS
pT fit with 10 fb-1

– 45 million W boson events
– 4.5 million Z boson events
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Measurement of sin2θW

• Chiral weak coupling produces angular asymmetry in Drell-Yan
– dσ / dcosθ ∝ 1 + cos2θ + AFB cosθ   [ AFB = f(vf, af, s) ]
– Vector & axial couplings:

• vf = I3
L - 2e sin2θW; af = I3

L

– Measurement provides sensitivity to sin2θW

sin2θW = 0.2326 ±
 0.0018stat ±
 0.0006sys

pp
e+

e-

θ

sin2θW = 0.23149 ±
 0.00013

DØ Collaboration,
PRL 101, 191801 (2008)

c.f. SM prediction:
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Quark Couplings to Neutral Current

• Ambiguity in LEP measurement of quark electroweak couplings
– HERA and Tevatron data resolving ambiguity
– Up and down quark couplings to neutral current

• Vector coupling:
– vq = I3

L - 2e sin2θW = 0.203 (u), -0.351 (d)
• Axial coupling:

– aq = I3
L = 1/2 (u), -1/2 (d)

Fit to vq, aq using NC
data from HERA

Factor of two more data
available for analysis

H1 Collaboration,
PLB 632, 35 (2006)
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Triple-Gauge Couplings
• Non-abelian electroweak structure tested in detail

– Tevatron results complementary to LEP
• Sensitive to deviations at higher Q2

• Separately probe WWZ and WWγ vertices
– Continue to add final states to probe triple-gauge couplings

• Wγ → lνγ
• Zγ → llγ
• Zγ → ννγ
• WW → llνν
• WW → lνqq
• WZ → lνqq
• WZ → lllν
• WZ → qqνν
• ZZ → qqνν
• ZZ → llll
• ZZ → llνν
• ZZ → llqq DØ Collaboration,

PRL 102, 201802 (2009)
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Triple-Gauge Couplings

DØ Collaboration,
arXiv:0904.0673 (2009)

• Non-abelian electroweak structure tested in detail
– Tevatron results complementary to LEP

• Sensitive to deviations at higher Q2

• Separately probe WWZ and WWγ vertices
– Continue to add final states to probe triple-gauge couplings

• Wγ → lνγ
• Zγ → llγ
• Zγ → ννγ
• WW → llνν
• WW → lνqq
• WZ → lνqq
• WZ → lllν
• WZ → qqνν
• ZZ → qqνν
• ZZ → llll
• ZZ → llνν
• ZZ → llqq
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Triple-Gauge Couplings

DØ Collaboration,
PRL 102, 161801 (2009)

• Non-abelian electroweak structure tested in detail
– Tevatron results complementary to LEP

• Sensitive to deviations at higher Q2

• Separately probe WWZ and WWγ vertices
– Continue to add final states to probe triple-gauge couplings

• Wγ → lνγ
• Zγ → llγ
• Zγ → ννγ
• WW → llνν
• WW → lνqq
• WZ → lνqq
• WZ → lllν
• WZ → qqνν
• ZZ → qqνν
• ZZ → llll
• ZZ → llνν
• ZZ → llqq

4.4σ evidence
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Triple-Gauge Couplings
• Non-abelian electroweak structure tested in detail

– Tevatron results complementary to LEP
• Sensitive to deviations at higher Q2

• Separately probe WWZ and WWγ vertices
– Continue to add final states to probe triple-gauge couplings

• Wγ → lνγ
• Zγ → llγ
• Zγ → ννγ
• WW → llνν
• WW → lνqq
• WZ → lνqq
• WZ → lllν
• WZ → qqνν
• ZZ → qqνν
• ZZ → llll
• ZZ → llνν
• ZZ → llqq

5.3σ observation
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Triple-Gauge Couplings

DØ Collaboration,
PRL 101, 171803 (2008)

• Non-abelian electroweak structure tested in detail
– Tevatron results complementary to LEP

• Sensitive to deviations at higher Q2

• Separately probe WWZ and WWγ vertices
– Continue to add final states to probe triple-gauge couplings

• Wγ → lνγ
• Zγ → llγ
• Zγ → ννγ
• WW → llνν
• WW → lνqq
• WZ → lνqq
• WZ → lllν
• WZ → qqνν
• ZZ → qqνν
• ZZ → llll
• ZZ → llνν
• ZZ → llqq 5.7σ observation

CDF Collaboration,
PRL 100, 201801 (2008)

4.4σ evidence
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More Results

• PDFs and mW at LHC
– Lepton charge asymmetry can constrain PDFs
– W+/W- production asymmetry complicates mW measurement

• Tau measurements at BaBar
– Lepton universality Z/γ∗ → ττ / Z/γ∗ → µµ = 1 (ignoring masses)

• Rτµ(Υ(1s)) = 1.009 ± 0.010stat ± 0.024sys

– Tau mass
• mτ = 1776.68 ± 0.12stat ± 0.41sys MeV
• (mτ+ - mτ- )/ mτ = (-3.5 ± 1.3) × 10-4

• (g - 2)µ

– New tau-based aµ
had more consistent with electron-based aµ

had (<3σ)
– g-2 data - theory discrepancy 1.9σ (τ) 3.5σ (e)
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Summary
• Steadily improving precision on mW

– CDF and DØ have the two best measurements in the world
– Pieces coming together to allow single measurements with δmW < 25 MeV
– Expect ultimate hadron-collider precision of δmW < 10 MeV

• Precision measurement of sin2θW possible with full Run 2 data set
– CDF and DØ have initial measurements using AFB in electron data

• HERA producing best measurements of NC quark couplings
– Now also able to observe triple-gauge couplings

• Tevatron experiments probing TGC with unprecedented precision
– New hadronic channels an important step on the road to the Higgs
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If there is no SM Higgs...

...who will exclude it first?


