Anomalous $WW\gamma$, $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings in γ -induced processes

Christophe Royon IRFU-SPP, CEA Saclay

Contents:

- WW production cross section at the LHC
- Trilinear anomalous coupling
- Quartic anomalous couplings

Work in collaboration with E. Chapon, O. Kepka See arXiv:0808.0322, Phys. Rev. D78 (2008) 073005 WW production at the LHC

- Study of the process: $pp \rightarrow ppWW$
- Clean process: W in central detector and nothing else, intact protons in final state which can be detected far away from interaction point
- Exclusive production of W pairs via photon exchange: QED process, cross section perfectly known
- Two steps: SM observation of WW events, anomalous coupling study (NB: new anomalous couplings predicted by beyond standard model theories) at low and high luminosities at LHC
- $\sigma_{WW} = 95.6 \text{ fb}, \ \sigma_{WW}(W > 1TeV) = 5.9 \text{ fb}$
- Rich γγ physics at LHC, supersymmetric particle production see T. Pierzchala, K. Piotrzkowski, Nucl. Phys. Proc. Suppl., 179 (2008))

Measuring the $\gamma\gamma \to WW$ SM cross section

- Forward detectors assumed for ATLAS/CMS experiments allowing to detect protons in the final state: $0.0015 < \xi < 0.15$ (proton fraction momentum carried by the photon)
- Signal and double pomeron exchange background cross section
- Clean signal: 2 W decaying in central detector, and proton detected in forward detectors
- For a luminosity of 200 pb⁻¹, observation of 5.6 W pair events for a background less than 0.4, which leads to a signal of 8 σ

ξ_{max}	signal (fb)	background (fb)
0.05	13.8	0.16
0.10	24.0	1.0
0.15	28.3	2.2

Quartic anomalous gauge couplings

• Quartic gauge anomalous $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings parametrised by a_0^W , a_0^Z , a_C^W , a_C^Z

$$\mathcal{L}_{6}^{0} \sim \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$\mathcal{L}_{6}^{C} \sim \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})$$

$$- \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

- Anomalous parameters equal to 0 for SM
- Best limits from LEP, OPAL (Phys. Rev. D 70 (2004) 032005) of the order of 0.02-0.04, for instance $-0.02 < a_0^W < 0.02$ GeV⁻²
- Dimension 6 operators \rightarrow violation of unitarity at high energies
- Introducing form factors in conventional way: $a_0^W/\Lambda^2 \rightarrow \frac{a_0^W/\Lambda^2}{(1+W\gamma\gamma/\Lambda_{cutoff})^2}$ with $\Lambda_{cutoff} \sim 2$ TeV, scale of new physics

Anomalous $WW\gamma\gamma$ quadric gauge coupling

- High cross sections at LHC even for an anomalous coupling much smaller than LEP limits (~ 0.01), given the expected luminosity ($\sim \text{fb}^{-1}$)
- Strategy: Look for W pair events even at low luminosity at the beginning of the LHC (10 pb^{-1} at $\sqrt{S} = 10$ TeV) and at higher luminosity when forward detectors to tag the protons are installed

Quartic anomalous coupling signal at low luminosity at LHC

- Signal: We focus on leptonic signals decays of WW and ZZ (typically at least two leptons and nothing else (no jet) in the detector): request two high p_T leptons, exclusivity requirements
- Backgrounds considered:
 - Non diffractive WW production: large energy flow in forward region, removed by "exclusivity cut"
 - Two photon dileptons: back-to-back leptons, small cross section for high p_T leptons

- Lepton production via double pomeron exchange (high mass): activity in the forward region due to pomeron remnants, removed by "exclusivity cut"
- WW via double pomeron exchange: Idem
- Standard model WW production via photon exchange: small cross section, removed partly by requesting a high p_T lepton

Quartic anomalous coupling signal at low luminosity at LHC

- P_T distribution of leading lepton (e or μ): removes SM background with a cut $p_T > 160$ GeV
- Other backgrounds very small after cuts (all implemented in FPMC Monte Carlo)

Event distribution for 10 pb⁻¹

After cuts, no background, sensivity comes mainly for WW or ZZ production cross section with anomalous coupling

Reach at low luminosity

Reach at low luminosity on quartic anomalous coupling

Coupling	OPAL limits	95% CL 10 pb^{-1}	95% CL 100 pb^{-1}
a_0^W	0.020	$8.1 10^{-5}$	$2.5 10^{-5}$
a_C^W	0.037	$4.5 10^{-4}$	$1.4 10^{-4}$
a_0^Z	0.023	$6.7 10^{-3}$	$2.3 \ 10^{-4}$
a_C^Z	0.029	$2.7 10^{-3}$	8.0 10^{-4}

- Improvement of LEP sensitivity by more than 2 orders of magnitude with 10 pb⁻¹ at LHC!!!
- NB: Effect of cutoff to avoid the violation of unitarity: reduces the sensitivity by a factor 4-5

Reach at high luminosity

- Exclusivity cut impossible because of pile up events
- Request protons tagged in forward detectors with $0.0015 < \xi < 0.15$

- Additional cuts to remove background: p_T (leading lepton) > 160 GeV, $p_T^2/p_T^1 < 0.9$, proton missing mass $\sqrt{\xi_1\xi_2S} > 800$ GeV, MET>20 GeV
- Reach: (95% CL limits for different luminosities)

Coupling	OPAL limits	10 pb^{-1}	30 fb ⁻¹	200 fb $^{-1}$
a_0^W	0.020	$2.2 10^{-5}$	$1.4 10^{-6}$	$7.9 10^{-7}$
a_C^W	0.037	8.4 10^{-5}	$5.7 \ 10^{-6}$	$3.6 10^{-6}$

Improvement by more than 3 orders of magnitude with respect to LEP!

Trilinear anomalous gauge couplings

- Lagrangian with trilinear gauge $WW\gamma$ anomalous couplings λ^γ and $\Delta\kappa^\gamma$

$$\mathcal{L} \sim (W^{\dagger}_{\mu\nu}W^{\mu}A^{\nu} - W_{\mu\nu}W^{\dagger\mu}A^{\nu}) + (1 + \Delta\kappa^{\gamma})W^{\dagger}_{\mu}W_{\nu}A^{\mu\nu} + \frac{\lambda^{\gamma}}{M_W^2}W^{\dagger}_{\rho\mu}W^{\mu}_{\ \nu}A^{\nu\rho}$$

- Present limits on trilinear gauge anomalous couplings:
 - From LEP: $-0.098 < \Delta \kappa^{\gamma} < 0.101$; $-0.044 < \lambda^{\gamma} < 0.047$ (Inconvenient: mixture of γ and Z exchanges in $e^+e^- \rightarrow WW$)
 - From Tevatron: $-0.51 < \Delta \kappa^{\gamma} < 0.51$; $-0.12 < \lambda^{\gamma} < 0.13$ (direct limits)

Anomalous $WW\gamma$ triple gauge coupling

Different behaviour of the cross section as a function of anomalous couplings

Measurement of WW events at high luminosities at LHC, 2W events and protons tagged in forward detectors

Reach on anomalous coupling

- Reach on anomalous coupling at the LHC using a luminosity of 30 fb^{-1}
 - 5 σ discovery: $-0.097 < \Delta \kappa^{\gamma} < 0.069$; $-0.047 < \lambda^{\gamma} < 0.038$
- 95% CL limit: $-0.034 < \Delta \kappa^{\gamma} < 0.029$; $-0.033 < \lambda^{\gamma} < 0.026$, about 970 (resp. 65) events expected in the detector acceptance for $\Delta \kappa^{\gamma}$ (resp. λ^{γ})
- Reach on anomalous coupling at the LHC using a luminosity of 200 fb⁻¹: 5σ discovery: $-0.033 < \Delta \kappa^{\gamma} < 0.029$; $-0.033 < \lambda^{\gamma} < 0.026$
- Best reach before ILC

Conclusion

- Observation of QED WW production at the LHC: easy even with low luminosity (200 pb⁻¹) once forward detectors installed
- Quartic gauge anomalous coupling studies at low luminosities: Easy analysis (2 W or Z decaying in main detector and nothing else); Improvement of LEP (OPAL) sensitivity by two to three orders of magnitude with $\sim 10 \text{ pb}^{-1}$
- Quartic gauge anomalous coupling studies at high luminosities: Requires forward detectors to be installed, further improvement on sensitivity of one order of magnitude
- Trilinear gauge anomalous coupling at high luminosity: requires forward detectors, gain of a factor 30 compared to Tevatron sensitivity (direct limit), gain of a factor 5 with respect to LEP (indirect limits), best reach before ILC
- 400 events expected for 200 fb⁻¹ for WW events QED SM production with W > 1 TeV: sensitive to beyond standard model effects (SUSY, new strong dysnamics at the TeV scale)