CMS L1 Trigger

Commissioning with cosmic rays

Tuula Mäki
CERN
for the CMS Collaboration

Tuula Maki
The 2009 Europhysics Conference on High Energy Physics, July 16th-22nd 2009
Outline

- LHC and CMS
- Two levels of CMS trigger: L1 and HLT
- Cosmic ray runs
- Results from cosmic ray runs
 - L1 trigger emulator studies
 - Synchronization of L1 triggers
 - Efficiencies of L1 triggers
 - Resolutions of L1 triggers
- Synchronization from LHC beam
- Summary
LHC and CMS

LHC (Large Hadron Collider)
- collides protons to protons with 14 TeV design center-of-mass energy
- first beams circulated in September 2008
- expected first collisions: end of 2009

CMS (Compact Muon Solenoid)
- multi-purpose experiment
- tracker, electromagnetic and hadronic calorimeters, and muon detectors
CMS Trigger system consists of two levels:

- **Level-1 trigger (L1)**
 - **input rate:** 1 GHz
 - **output rate:** 100 kHz
 - **custom made hardware processors**

- **High Level trigger (HLT)**
 - **input rate:** 100 kHz
 - **output rate:** 100 Hz
 - **PC farm using reconstruction software and event filters similar to the offline analysis**
The L1 trigger is based on the calorimeter and muon detectors.

At L1 we trigger on:
- 4 highest $E_T e^+/\gamma$
- 4 highest E_T central jets
- 4 highest E_T forward jets
- 4 highest E_T tau-jets
- 4 highest P_T muons

For each of these objects the rapidity, η, and ϕ are also transmitted to GT so HLT can seed on them.

In addition we trigger on
- inclusive triggers: E_T, ME_T, H_T, MH_T
- minimum-bias and zero-bias

3.2 μs latency
- cable propagation leaves 1 μs for processing
Cosmic ray runs

- CMS has collected over 300 million cosmic ray events
 - without good trigger, only very low chances to see cosmic ray muons or high-E_T “jets” or “electrons”

- Cosmic ray runs help preparing for physics running
 - synchronization between trigger and data
 - trigger rates from cosmic rays and from noise
 - trigger efficiencies
 - resolutions between trigger and reconstructed objects
Trigger shifter monitoring tools

Cosmic ray runs are good opportunity to test and improve

- online software
- trigger monitoring tools
- train people for real data taking

Tuula Maki
The 2009 Europhysics Conference on High Energy Physics, July 16th-22nd 2009
L1 trigger emulator

- Software that emulates bit by bit the L1 trigger subsystems
 - *it uses the same input as hardware*
 - *it produces the same output as hardware, with identical format*
 - *it uses the same configuration as the hardware*

- Excellent agreement between data and emulator
L1 trigger emulator continued

Note: the GCT data is mainly noise, thus the structures are not important!
Synchronization of muon triggers

Bunch crossing differences between L1 muon candidates created by the same cosmic muon

★ synchronization as good as one can expect from cosmic rays

★ CSC trigger timing: dashed line shows the situation before last modification

Tuula Maki

The 2009 Europhysics Conference on High Energy Physics, July 16th-22nd 2009
Synchronization between L1 muon and CALO triggers

Bunch crossing differences between L1 muon candidates and calorimeter triggers

★ synchronization as good as one can expect from cosmic rays

Tuula Maki

The 2009 Europhysics Conference on High Energy Physics, July 16th-22nd 2009
Efficiency of muon triggers

DTTF trigger efficiency
- trigger efficiency wrt stand-alone tracks
- holes: sectors masked due to hardware problems

DTTF trigger efficiency vs p_T
- masked sectors removed
- good agreement between data and MC
Efficiency of muon triggers continued

CSCTF efficiency
- tracker track extrapolated to endcap
- look for matching CSC trigger with 2 or more stations in coincidence

RPC occupancy
- during 2008 cosmic ray run
- endcaps fully ready in 2009 runs

![CSCTF Efficiency Chart](chart1.png)

![RPC Occupancy Chart](chart2.png)
Efficiency of CALO triggers

- E/gamma trigger efficiency turning curve
 - muon triggered events
 - reconstructed muon passing close to ECAL supercluster

Jet trigger efficiency
- E/gamma triggered events
 - *mainly noise with large electromagnetic fraction*

Tuula Maki The 2009 Europhysics Conference on High Energy Physics, July 16th-22nd 2009 14
Muon phi, eta resolution

DTTF phi resolution
- difference wrt stand-alone track
- **bottom sectors**: LHC-like muon direction
 - **observed sigma=0.021**
 - **expected sigma~0.02**

DTTF eta resolution
- difference wrt stand-alone track
- **red plot**: eta TF not fully operational in 2008 running
- **blue plot**: commissioned eta TF in 2009 running
Muon phi, p_T resolutions continued

CSCTF resolutions
- require a muon on both top and bottom part of the detector
- compare the muon on bottom part to reconstructed track

Tuula Maki
E/\gammaeta, \phi resolution

Eta, phi correlations
- L1 trigger object matched to closest reconstructed super cluster

Eta, phi resolutions
- muon triggered events
- reconstructed muon close to super cluster
- granularity of L1 e/\gamma trigger: 0.35x0.35

*resolution width as expected
L1 synchronization to LHC beam

Beam splash events
- Measurement of the time delay between the Beam Pickup (BPTX) trigger and previously synchronized CSC beam halo trigger

Circulating beams
- Synchronization of BPTX trigger with CSC halo trigger
- CSC beam halo spread into two BX due to imperfect internal synchronization (cosmic data limitation)

Tuula Maki

The 2009 Europhysics Conference on High Energy Physics, July 16th-22nd 2009
Summary

- Experience from cosmic ray runs has proved that L1 trigger runs stably and reliably

- We have performed several analysis from the L1 trigger data from cosmic rays
 - L1 trigger emulator studies
 - Synchronization of L1 triggers
 - Efficiencies of L1 triggers
 - Resolutions of L1 triggers
 - Results show good performance of the L1 trigger

- CMS L1 trigger is ready and looking forward to collision data
HLT trigger

Purely software based
 runs on a farm of commercial PCs

Less strict time constraints than L1 trigger
 average processing time 40 ms

Algorithms executed in order of increasing complexity
 Finer granularity precise measurements
 Clean particle signatures
 Kinematics, effective mass cuts and event topologies
 Track reconstruction and detector matching
 Event reconstruction and analysis

Execution of path stopped unless evidence for signal is found
L1 trigger