Exclusive photoproduction at HERA

Dorota Szuba
DESY, Hamburg
on behalf of

EPS2009, Kraków, Poland
exclusive diffraction

experimentally: very clean process in wide kinematic range

VM	Vector Meson or γ	$\rho, \omega, \phi, J/\psi, \psi', \Upsilon$
Q2	photon virtuality	$Q^2 = -q^2 = -(k - k')^2$
W	c.m. energy of γp system	$W = (q + p)^2$
t	(4-mom. transfer)2 at p-vertex	$t = (P - P')^2$

\rightarrow **VM at HERA**: transition between soft and hard regime

\rightarrow simultaneous study of **different scales**: $Q^2, |t|, M_{VM}^2$
diffractive vector meson production

VM = $q\bar{q}$ dipol, exchange of ≥ 2 gluons (color singlet - QCD Pomeron)

large Q^2, M_{VM}^2 or $|t| \Rightarrow$ small $q\bar{q}$ and interaction size

hard interaction \Rightarrow perturbative QCD applicable, factorization holds

'Exclusive' VM electroproduction:
- steep rise of $\sigma(W)$, $\sigma \sim \frac{\alpha_s(Q^2)}{Q^2} [xg(x, Q^2)]^2, x \approx Q^2/W^2$
- universal t dependence: $\sim \exp^{-b_2g|t|}, b_2g \sim 4-5\text{ GeV}^{-2}$ and $\alpha_{FP}' \approx 0$
- possible SCHC violation

'Proton dissociative' VM photoproduction;
- $d\sigma/d|t| \sim |t|^{-n}$
- 2-gluon exchange - no energy dependence
gluon ladder exchange – energy dependence:
 - weak (DGLAP)
 - strong (BFKL)
vector mesons in photoproduction ($Q^2 = 0 \text{ GeV}^2$)

$$\gamma p \rightarrow VM + p \ (VM = \rho, \phi, \omega, J/\psi, \psi, \Upsilon)$$

$$\sigma(W) \propto W^\delta$$

Low mass (ρ, ϕ, ω)
- $M_{VM}^2 \approx 1 \text{ GeV}^2$
- no hard scale
- weak W dependence

High mass ($J/\psi, \psi, \Upsilon$)
- hard scale
- strong W dependence

- The larger M_{VM} the harder process (steeper W dependence)
- Vector meson mass sets hard scale
production – energy dependence

accepted by Phys. Lett. B (Ref. No. PLB-D-09-00488)

- **pQCD models – W-slope prediction:**
 - FMS LO: \(\delta \approx 1.7 \)
 - MNRT NLO: \(\delta \approx 1.2 \)
 - data: \(\delta = 1.2 \pm 0.8 \)

Sensitivity to:
- (RSS model) vector meson wave function: data seem to prefer Gauss to Coulomb
- hard scale value: in IKS model scale is between \(1.3 < \mu < 7 \) GeV

ZEUS

- **ZEUS 468 pb\(^{-1}\)**
- \(Q^2 < 1 \) GeV\(^2\)
- \(60 < W < 220 \) GeV

FMS – Frankfurt, McDermott, Strikman (CTEQ4L)
MNRT NLO – Martin, Nockles, Ryskin, Teubner
IKS – Ivanov, Krasnikov, Szymanowski
RSS – Rybarska, Schaefer, Szczurek

D.Szuba, 18.07.09
\(\delta (Q^2 + M_{VM}^2) \)

Large \(Q^2 \) and \(M_{VM} \) sets hard scale

Steep slope observed for all VM in the presence of hard scale

\(\sigma \sim W^\delta \)

\(\delta \) rises with \(Q^2 + M_{VM}^2 \)

Transition from soft to hard regime with increasing of hard scale
large $|t|$ domain

Diffractive photoproduction of J/ψ mesons with large momentum transfer at HERA (ready for publication)

\[\gamma p \rightarrow J/\psi Y \]

ZEUS

\[Q^2 \sim 0 \]
\[2 < |t| < 20 \text{ GeV}^2 \]
\[30 < W < 160 \text{ GeV} \]
\[z > 0.95 \]

\[z = \frac{P \cdot \psi}{P \cdot q} \]
\[y_P = \frac{P \cdot (P - P')}{{q'} \cdot P} \]
\[z = 1 - y_P \]

pQCD models:

\[\frac{d\sigma}{dt} \sim t^{-n} \]
\[\sigma \sim W^\delta \]

H1

\[Q^2 \sim 0 \]
\[4 < |t| < 36 \text{ GeV}^2 \]
\[175 < W < 247 \text{ GeV} \]
\[y_P < 0.05 \]
large $|t|$: $|t|$-dependence

- $d\sigma/d|t|$ falls steeply with $|t|
- pQCD expectation: $\frac{d\sigma}{d|t|} \sim |t|^{-n}$

$H1$ Diffractive Scattering of γ at large $|t|$
energy dependence and Pomeron trajectory

soft pomeron (DL):
\[\alpha_{IP}(t) = 1.08 + 0.25t \]

\[\frac{d\sigma}{dt} \propto \left(\frac{W}{W_0} \right)^4 (\alpha_{IP}(t) - 1) \]

\[\frac{d\sigma}{dt} \propto \left(\frac{W}{W_0} \right)^{\delta} \]

\[\alpha_{IP}(t) = \alpha(0) + \alpha_{IP} \cdot t \]

\[\alpha_{IP}(0) = 1.084 \pm 0.031^{+0.025}_{-0.018} \]

\[\alpha_{IP}' = -0.014 \pm 0.007^{+0.004}_{-0.005} \text{ GeV}^{-2} \]

D.Szuba, 18.07.09
energy dependence and Pomeron trajectory

A Measurement of the Pomeron Trajectory based on Elastic Rho Photoproduction (H1 preliminary)

\[\frac{d\sigma}{dt} \propto \left(\frac{W}{W_0} \right)^4 (\alpha_{IP}(t) - 1) \]

Regge theory inspired

\[\alpha_{IP}(t) = \alpha(0) + \alpha'_{IP} \cdot t \]

Soft pomeron (DL):

\[\alpha_{IP}(t) = 1.08 + 0.25 t \]

D. Szuba, 18.07.09

\[\alpha_{IP}(0) = 1.0871 \pm 0.0026 \pm 0.0030 \]

\[\alpha'_{IP} = 0.126 \pm 0.013 \pm 0.012 \text{ GeV}^{-2} \]
large $|t|$: $d\sigma/d|t|$ vs theory

- BFKL LL calculations steeper than data
- DGLAP work up to $|t|=5 \text{ GeV}^2$ but later falls slower than data
- FSZ gives good description up $|t|=12 \text{ GeV}^2$

DGLAP–GLMN LL:

BFKL LL – EMP LL:

FSZ:
large $|t|$: σ vs theory

- DGLAP (GLMN LL) describes data very well up to $|t|=5$ GeV2
- BFKL (EMP LL, $\alpha_s=0.16$) and FSZ are too steep

- BFKL describes W dependence

H1 Diffractive Scattering of γ at large $|t|

\[
\delta = 2.73 \pm 1.02^{+0.56}_{-0.78}
\]
summary

• New measurements of vector mesons and high-\(p_t\) photons
• The \(\Upsilon\) cross section rises as \(W^\delta\) and \(\delta\) grows with the universal hard scale \(Q^2+M^2_{\text{VM}}\)
• pQCD motivated fit \(d\sigma/dt \sim t^{-n}\) for large \(|t|\) does not describe data in the full kinematic range (J/\(\psi\))
• Effective Pomeron trajectory has smaller slope than that extracted from soft hadron-hadron scattering for large \(|t|\) (J/\(\psi\)) as well as for elastic \(\rho\) production
• None of the models in large \(|t|\) domain can reproduce the data in the full kinematic range (J/\(\psi\) / \(\gamma\))