Transverse-momentum resummation for gaugino-pair production at hadron colliders

Jonathan Debove LPSC Grenoble

in collaboration with B. Fuks and M. Klasen - [arXiv:0907.1105[hep-ph]]

Krakow July 17, 2009

Outline

Introduction

Neutralinos/Charginos Motivation

 p_T -spectrum of neutralino/chargino pairs in hadron collisions Fixed-order calculation p_T -resummation formalism Numerical results

Conclusion

Minimal Supersymmetric Standard Model

Main features

- High-energy extension of the Standard Model
- Symmetry between bosons and fermions
- Each SM particle has one SUSY partner

Some advantages

- Solution to the hierarchy problem
- Gauge coupling unification
- R-parity: Lightest SUSY particle stable
 - ⇒ dark matter candidate (can be the lightest neutralino)

Neutralinos and charginos

- ▶ Gauginos: \widetilde{W}^{\pm} , \widetilde{W}^{0} , \widetilde{B}
- ▶ Higgsinos: \widetilde{H}_2^+ , \widetilde{H}_2^0 , \widetilde{H}_1^0 , \widetilde{H}_1^-
- ► EWSB → Mixings → Neutralinos and charginos

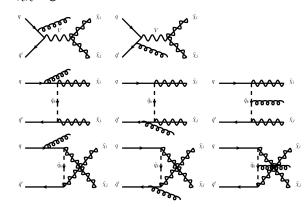
$$\begin{pmatrix} \widetilde{\chi}_{1}^{0} \\ \widetilde{\chi}_{2}^{0} \\ \widetilde{\chi}_{3}^{0} \\ \widetilde{\chi}_{4}^{0} \end{pmatrix} = N \begin{pmatrix} -i\widetilde{B}^{0} \\ -i\widetilde{W}^{0} \\ \widetilde{H}_{1}^{0} \\ \widetilde{H}_{1}^{0} \end{pmatrix}$$

$$\begin{pmatrix} \widetilde{\chi}_1^- \\ \widetilde{\chi}_2^- \end{pmatrix} = U \begin{pmatrix} -i\widetilde{W}^- \\ \widetilde{H}_1^- \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \widetilde{\chi}_1^+ \\ \widetilde{\chi}_2^+ \end{pmatrix} = V \begin{pmatrix} -i\widetilde{W}^+ \\ \widetilde{H}_2^+ \end{pmatrix}$$

Motivation for gaugino study

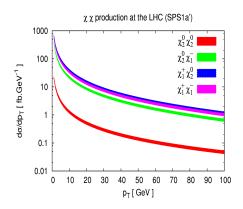
- Need accurate values for masses and mixings
 - Hints on SUSY-breaking mechanism
 - DM calculations strongly rely on these parameters
- ▶ Among the lightest SUSY particles in many SUSY-breaking scenarii
 ⇒ May be produced at current colliders
- Can decay into the LSP and leptons
- ▶ Clean signal: leptons + large E/T
- ▶ Tevatron researchs for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow I^{\pm} I^+ I^- + E_T$ [CDF(2008), D0(2006)]
- \triangleright Precision calculation for the p_T -spectrum of the gaugino pairs

Outline


Introduction

Neutralinos/Charginos Motivation

 p_T -spectrum of neutralino/chargino pairs in hadron collisions Fixed-order calculation p_T -resummation formalism Numerical results


Conclusion

LO partonic cross section at $O(\alpha^2 \alpha_S)$

▶ $qg \longrightarrow \tilde{\chi}\tilde{\chi} + q$ and $g\bar{q} \longrightarrow \tilde{\chi}\tilde{\chi} + \bar{q}$

p_T-spectrum at the LHC

- ► SPS1a': $m_0 = 70$ GeV, $m_{1/2} = 250$ GeV, $A_0 = -300$ GeV tan $\beta = 10$, $\mu > 0$
- ► mSUGRA RGE: SuSpect2.3
- PDF set: CTEQ6

$$ightharpoons ar{m}_{ ilde{\chi}} pprox 183 \; {
m GeV}$$

$$ightharpoonup ar{m}_{\tilde{\chi}}/2 \leq \mu_R = \mu_F \leq 2ar{m}_{\tilde{\chi}}$$

- ▶ Divergent at $p_T = 0$ GeV
- ► Soft/collinear parton emission

$$\frac{\textit{M}^2\textit{d}\sigma}{\textit{d}\textit{M}^2\textit{d}\textit{p}_T^2} \sim \sigma_0 \frac{\alpha_s}{\textit{p}_T^2} \ln \frac{\textit{M}^2}{\textit{p}_T^2}$$

- ► Fixed-order calculation leads to unreliable results at small *p_T*
- ► All-order resummation of the logs

Resummation formalism

- ▶ p_T-resummation formalism: [Collins, Soper, (Sterman) (1981(5))], [Bozzi, Catani, de Florian, Grazzini (2006)]
- Cross section formally decomposed into two parts

$$\frac{d\sigma}{dM^2dp_T^2} = \frac{d\sigma^{(res.)}}{dM^2dp_T^2} + \frac{d\sigma^{(fin.)}}{dM^2dp_T^2}$$

- $ightharpoonup \frac{d\sigma^{(res.)}}{dM^2dv_T^2}$: includes all the singular terms

 - ▶ terms propotionnal to $\delta(p_T^2)$ (Born, One-loop)

 ▶ terms propotionnal to $p_T^{-2} \ln^n \frac{M^2}{p_\tau^2}$ (Real emission)
- $ightharpoonup \frac{d\sigma^{(fin.)}}{dM^2dn_+^2}$: includes all the regular terms

Resummation formalism [Singular part]

p_T-resummation is formulated in inverse space

$$W(b^2, M^2b^2) = \int d^2p_T e^{-i\mathbf{b}.\mathbf{p}_T} \frac{d\sigma^{(res.)}}{dM^2dp_T^2} \quad \Rightarrow \quad \ln\frac{M^2}{p_T^2} \to \ln M^2b^2$$

C.S.S. found the evolution equation of W

$$\frac{\partial}{\partial \ln M^2} W(b^2, M^2 b^2) = -\gamma_W(M^2, M^2 b^2) W(b^2, M^2 b^2)$$

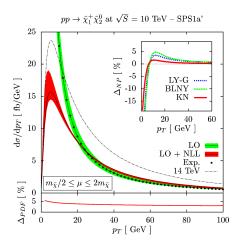
▶ The solution leads to the exponentiation of the large logs

$$W(b^2, M^2b^2) = W(b^2, 1) \exp \left[-\int_{1/b^2}^{M^2} \frac{dq^2}{q^2} \gamma_W(q^2, q^2b^2) \right]$$
Sudakov exponent

▶ No large logs in W. W and γ_W can be computed perturbatively

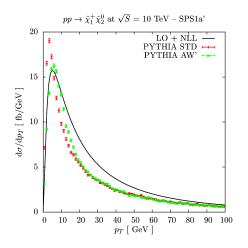
Resummation formalism [Regular part]

▶ For the finite component, we use direct matching


$$\left. \frac{d\sigma^{(fin.)}}{dM^2 dp_T^2} \right|_{LO} = \frac{d\sigma}{dM^2 dp_T^2} \bigg|_{LO} - \frac{d\sigma^{(res.)}}{dM^2 dp_T^2} \bigg|_{LO}$$

And we get

$$\left. \frac{d\sigma}{dM^2 dp_T^2} \right|_{LO+NLL} = \frac{d\sigma}{dM^2 dp_T^2} \bigg|_{LO} + \left. \frac{d\sigma^{(res.)}}{dM^2 dp_T^2} \right|_{NLL} - \left. \frac{d\sigma^{(res.)}}{dM^2 dp_T^2} \right|_{LO}$$


- \triangleright p_T -distribution is affected by NP effects in the small p_T -region: Universal for DY-like processes and obtained with DY data
- ▶ 3 parametrizations are investigated: [Konychev, Nadolsky (2006)], [Landry, Brock, Nadolsky, Yuan (2003)], [Ladinsky, Yuan (1994)]

Numerical results

- ▶ Get finite results for small p_T
- Scale dependence improved
- ▶ PDF uncertainties ~ 5%
- NP important for small p_T but < 5% for $p_T > 5$ GeV

Numerical results

- ► PYTHIA STD: Peak at too small values of *p_T*
- ► PYTHIA AW': CDF tune for V-boson production [Field (2006)]
- ► Correct peak but underestimate the intermediate p_T-region

Conclusion

- \triangleright p_T -spectrum of neutralino/chargino pairs at hadron colliders
 - Usual fixed-order calculation leads to incorrect predictions at small values of p_T
 - Need to resum the large logs
- ▶ *p*_T-resummation
 - up to NLL accuracy
 - ▶ At small p_T : Finite and predictive results
 - ▶ At intermediate p_T : Scale dependence is reduced
 - Studies of PDF uncertainties and the NP effects
 - vs PYTHIA