The T2K TPCs

Claudio Giganti IRFU-CEA Saclay

On behalf of the T2K TPCs working group:

Canada	University of British Columbia
	University of Victoria
	TRIUMF
France	IRFU-CEA Saclay
	LPNHE Paris-VI-VII universities
Germany	RWTH Aachen
Italy	INFN
Spain	UAB/IFAE University of Barcelona
-	University of Valencia
Switzerland	University of Geneva

The T2K experiment

SupeKamiokande 50 kTon Water Cherenkov Detector

- Long Baseline Neutrino oscillation experiment
 - The neutrino beam started in April 2009
 - The data taking with all the ND280 facility installed will start in December 2009
- 30 GeV proton accelerator will be used to produce a ν_μ beam that will be sent from Tokai to SuperKamiokande

□ L = 295 Km

- Mean neutrino energy E_v = 0.7 GeV (where the maximum of the oscillation is expected)
- Search for v_e appearance → Improve the actual limit on θ₁₃ by 1 order of magnitude
- v_{μ} disappearance \rightarrow Precise measurement of θ_{23} and Δm_{23}^2

The Near Detector and the TPC

- Near Detector complex at 280 meters from the proton target
- Several detectors inside the UA1 magnet (with a field of 0.2 T)
 - Characterize neutrino beam (before the oscillations)
 - Measure v_e contamination in the beam
 - Study background process to oscillation signal

- Tracker system (TPC + FGD):
 - v_{μ} and v_{e} fluxes and spectra
 - Measure neutrino cross section
- 3 large TPCs
 - Excellent pattern recognition to distinguish the different interactions
 - Measure the charge and the momenta of the charged particles
 - Particle Identification: distinguishing electrons/muons and pions/protons

TPCs design

- Double wall structure:
 - Inner volume walls create the drift field
 - Outer volume for gas/HV insulation
 - Sensitive volume: 180 x 200 x 70 cm
 - Total active area of ~9 m²
- Gas mixture: Ar/CF₄/iC₄H₁₀ (95/3/2)
 - Fast gas:
 - v_d ~ 7.9 cm/μs @ 280 V/cm
 - Low transverse diffusion:
 - D_t ~ 270 µm/√cm @ 280 V/cm → good spatial resolution
- Electron amplification provided by MicroMegas
- A Laser system is installed to provide real time calibration during the operations

- TPC physics requirements:
 - δp/p < 10% @ 1GeV to reconstruct neutrino energy spectrum
 - dE/dx resolution better than 10% to perform electron/muon separation
 - Energy scale to be controlled at the 2%

Readout plane: Bulk MicroMegas

Signal Amplification:

- □ 12 large (35x36 cm²) bulk-MicroMegas on each endplate → 72 modules in 3 TPCs
- Each module has 1726 active pads (6.9x9.7 mm)
- Pads arranged in 36 columns and 48 rows
- Total of ~120 000 channels
- Produced @ CERN/TS-DEM-PMT, tested and validated in a test bench at CERN
- Readout electronic:
 - □ ASIC AFTER (72 channels) with programmable gain, sampling time...
 - 6 FEC + 1 FEM on each module

Front-End Card (FEC)

Front-End Mezzanine (FEM)

Construction status

- Assembling and integration undergoing at TRIUMF
- Module 0:
 - Construction completed
 - Fully equipped
 - Beam test completed
 - Shipped to Tokai

Module 1:

- Construction completed
- Fully equipped
- Beam test currently undergoing
- Will be shipped to Tokai in August
- Module 2:
 - Under construction
 - Sent to Tokai by the end of the year

Beam test with TPCs

- The TPC Mod0 and Mod1 underwent beam tests in the M11 area at TRIUMF
- The beam provides e, μ , π with a momentum up to 400 MeV/c
- A Time Of Flight system provides e, μ , π tagging
- Each track crosses 2 MicroMegas modules

Tracks in the TPC Module 0

 Beam track on 2 MM modules (with a δ ray)

Cosmic on the full

- We used these data to study the TPC performances in terms of:
 - Energy resolution \rightarrow Particle Identification
 - Spatial resolution \rightarrow Momentum resolution

M11 results: Energy loss

- One of the main purposes of the TPCs is the Particle Identification
- The PID is based on the deposited energy by the charged particles
- This distribution is broad due to the Landau tails

- A truncated mean method is used to exclude the tails:
 - Order the charge per column C_C as a function of increasing charge

$$C_T = \frac{1}{\alpha N} \sum_{i}^{\alpha N} C_C(i)$$
 $\alpha = 0.7$

 C_T has a Gaussian distribution with a resolution < 8%

Charge per column data

Energy resolution

- Good agreement between data and MC
- ► ~40% separation between electrons and muons → We need a resolution better than 10% to distinguish them
- Energy resolution better than 9% for all the momenta
- Electron/Muon separation better than 5_o if the momentum is larger than 200 MeV

Spatial resolution

- The spatial resolution is defined by the residual distribution:
 - Distance column by column between the center of mass of the charge and the track's fit position
 - The resolution is better if more than one pad are illuminated

- Spatial resolution in M11 data:
 - \square 650 µm @ 75 cm of drift dist
- Good agreement with previous results with MicroMegas prototypes (NIM 602(2): 415- 420)
- Will allow to meet the requirements for the momentum resolution

□ (δp/p < 10% @ 1 GeV)

Conclusions

- The 3 TPCs are one of the key elements of the T2K Near Detector
 - The Module 0 is ready, fully equipped and has already been received in Japan
 - The Module1 is ready, fully equipped and is under beam test at TRIUMF
 - The Module 2 is under construction and will be sent to Tokai by the end of the 2009
 - □ T2K will start the data taking in December 2009
- The beam tests performed at TRIUMF showed that the TPCs meet the requirements:
 - Energy resolution better than 8% for a MIP
 - $\hfill\square$ Electron/Muon separation better than 55 @ p>200 MeV
 - □ Spatial resolution of 650 μ m @ 75 cm → δ p/p < 10% @ 1 GeV

Back up slides

Neutrino mixing

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

P(
$$v_{\mu} \rightarrow v_{\mu}$$
)≈1 - cos⁴ θ_{13} sin² 2 θ_{23} sin² (1.27 $\Delta m_{23}^2 L/E_v$)
P($v_{\mu} \rightarrow v_e$)≈sin² 2 θ_{13} sin² (1.27 $\Delta m_{13}^2 L/E_v$)

The Bulk MicroMegas

- The Bulk MicroMegas is a technology developed at CERN/Saclay
- Sandwich of:
 - 3 photo-imageable insulator layer (Pyralux) of 64 μm each
 - 1 steel mesh with a width of 2.4 mm and 2 layers (x,y) of 19 μm wires
- The sandwich is laminated on the PCB, exposed to UV, cleaned-heat-dried 2-3 times and then after a global QC test it's cut to the final dimensions
- Total thickness 19.5 mm
- Advantages:
 - □ Steel mesh → Robustness
 - Large area can be produced
 - Less dead zones on the edge
 - Better gain uniformity in the corners

TPC Module 0 @ TRIUMF

Installation of the electronic on the TPC

Module 0 is now fully equipped with 24 MicroMegas and all the Front-End electronic

Claudio Giganti - EPS HEP 09 The T2K TPCs

Energy resolution in the MicroMegas

Muons, p = 150 MeV/c, energy resolution in the 2 MM modules

Resolution for different particles

- With the TOF system we selected samples of electrons, muons and pions for a given momentum
- TPC horizontal, p = 150 MeV/c

M11 data pressure dependence

- The gain of the MicroMegas depends on the external pressure
- This dependence can be seen analyzing runs taken at the same conditions and with different external pressure
- Useful runs in the night of 22nd November, P = 300 MeV/c
 - Pressure variation from ~ 1001 mbar to ~ 1007 mbar

- $\Delta g = 3.3 \pm 0.6$ % for $\Delta p = 1$ %
- During previous MicroMegas test, with a ⁵⁵Fe source, we found $\Delta g = 3.1 \pm 0.3$ % for $\Delta p = 1$ %

Laser calibration system

- In situ field distortion calibration
- Targets placed on the central cathode, positions surveyed by router (accuracy better than 100 μm
- The targets, illuminated with UV laser light, emit photoelectrons that are then collected on the MicroMegas plane

MicroMegas tests in the HARP field cage

History of tests

